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Abstract: In this paper, optimal tuning the parameters of a power system stabilizer (PSS) controller for the power 
system transient stability enhancement is introduced. The design problem of the proposed PSS is converted to an 

optimization problem with the time-domain based objective function which is solved by using particle swarm 

optimization (PSO) technique with a robust ability in order to find the most promising results. The dynamic 

performance PSS controller is evaluated on the basis of a multi-machine power system exposed to the diverse 

disturbances by comparison with the genetic algorithm-based damping controller. By virtue of the nonlinear time-

domain simulation and some performance indices studies, the performance of the proposed PSS controller is tested and 

observed.   The results show that the tuned PSO based PSS damping controller by the proposed fitness function has an 

excellent capability in damping power system low frequency oscillations, as well as it significantly improves the 

dynamic stability of the power systems. In addition, the results reveal that the performance of the designed controller is 

better than the genetic algorithm based stabilizer. 
Keywords: Multi-machine power system, power system stabilizer (PSS), transient stability, particle swarm optimization 

(PSO), genetic algorithm (GA). 

 

1. Introduction 
 

Stability of power system is one of the pivotal 

facets in electric system operation, since the power 

system is required to maintain its frequency and 

voltage levels at the nominal values under any 

disturbance, such as a sudden increase in the load, loss 

of one generator or switching out of a transmission line 

during a fault [1]. There have been spontaneous system 
oscillations at very low frequencies in order of 0.2-3.0 

Hz. through the enhancement of interconnection of 

large electric power systems. They may continue for an 

extended period of time soon after the initiation.  In 

some instances, they would proceed to grow, causing 

system separation in case of inadequate damping. In 

addition, low frequency oscillations present limitations 

on the power-transfer capability. In order to develop 

system damping, the generators are provided with 

Power System Stabilizer (PSS), which yield 

supplementary feedback stabilizing signals in the 
excitation system. PSS augments the power system 

stability limit and extend the power-transfer capability 

through developing the system damping of low 

frequency oscillations related to the electromechanical 

modes [2].  

PSS parameter tuning's problem is a complex 

exercise. Several traditional methods have been 

reported in the literature apropos of design PSS, such 

as the eigenvalue assignment, gradient procedure for 

optimization, mathematical programming, and the modern 

control theory [2-5]. However, since these traditional 
techniques are iterative and entail heavy computation 

burden and slow convergence, they are time consuming. 

Further, the search process is liable to be trapped in local 

minima and the acquired solution cannot guarantee the 

optimal parameters for system [6]. In most cases, proposals 

concerning PSS parameter tuning are rested upon small 

disturbance analysis, which necessitates the linearization of 

the system entailed. Nevertheless, linear techniques may 

not appropriately acquire the system's complex dynamics, 

particularly under severe disturbances.   

Heuristic population-based optimization techniques like 
genetic algorithm (GA), tabu search, evolutionary 

programming and simulated annealing, are the fastest 

growing optimization technique in recent years because of 

its capability in solving a special sort of real-world 

problems symbolized as high dimension, non-linearity, 

non-differentiability, non-convexity and multi-modal, 

which constitute the traditional derivative-based technique's 

deficiency. Heuristic techniques have been applied for PSS 

parameter optimization [7-15]. In recent years, Particle 

Swarm Optimization (PSO) technique considered to be an 

auspicious algorithm in handling the optimization 

problems. Being inspired by social behavior of bird 
flocking or fish schooling, PSO is a population based 

stochastic optimization method [16]. Though PSO has 

several similarities with Genetic Algorithm (GA), including 

initialization of population of random solutions and looking 
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for the optimal by updating generations, PSO, in 

contrast to GA, has no evolution operators like 

crossover and mutation. PSO's most auspicious 

superiority to GA arises from its algorithmic 

simplicity, since it employs smaller amount of 

parameters and facile to carry out [17-18]. In PSO 

technique, the potential solutions, known as particles, 
fly through the problem space by tracking the current 

optimum particles [18]. Therefore, in the present work 

PSO technique has been used to optimally tune the 

parameters of the PSS. 

In this study, PSS-based damping controller design 

using PSO algorithm is proposed. The design problem 

of the proposed controller is transformed into an 

optimization problem. Then, PSO algorithm is 

employed to solve this optimization problem with the 

aim of getting optimal settings of PSS parameters. The 

optimal location of PSS selected based on Participation 
Factor (PF) analysis. Proposed controller's 

effectiveness is verified by a three-machine nine-bus 

power system under diverse severe disturbances by 

comparison with the GA based damping controller 

through the nonlinear time simulation and a number of 

performance indices. The results analysis reveals that 

the proposed technique attains the desired performance 

for damping the low frequency oscillations under a 

variety of disturbances. It also demonstrates that the 

proposed method is better than the GA based damping 

controller.  
 

2. Modeling of Flux Decay Model and Fast 

Exciter 
 

In this study, we use the flux decay model with 

static exciter for nonlinear time-domain simulations. 

The mathematical model comprises differential 

equations with regard to machine and exciter 

dynamics, and the algebraic equations corresponding to 

the stator and network equations [19]. The differential-

algebraic equations for the m machine, n bus system 

with static exciter as follows: 

 

2.1. Differential Equations  
 

The differential equations of the machine and the 

exciter are given as in [19] where the various symbols 

are defined: 

 

1i

s i s i

d

dt
                                          (1) 

 

( ) ( 1)qi qi qi di di qii mi i i

i i i i

E i x x i id P D

dt M M M M
        (2) 

 

( )qi qi fdidi di di

doi doi doi

dE E Ex x i

dt T T T
                             (3) 

, ,

fdi fdi Ai

ref i PSS i i

Ai Ai

dE E K
V V V

dt T T
                             (4) 

for 1, ,i m  

 

2.2. Stator Algebraic Equations 
 

The stator algebraic equations explain the electrical 

variables pertaining to the stator windings. The stator 

algebraic equations expressed as [19] 

 

sin( ) 0i i i si di qi qiV r i x i                                           (5) 

 

cos( ) 0qi i i i si qi di diE V r i x i                                  (6) 

  for 1, ,i m  

 

2.3. Network Equations  
 

In this study, the current-balance form [19] is used and 

the loads are assumed to be constant impedance and 

converted to admittances. In power system with m 

generators, the nodal equation can be written as 

 

1

1

0

0

m

n

I

V

I
Y

V

                                                               (7) 

 
/2ij

i di qiI i ji e            1, ,i m                           (8) 

 

where 1 , , mI I  are the complex injected generator 

currents at the generator buses. Assume that the modified 

bus
Y  represented as Y  be divided as 

 

1 2

3 4

m     n-m

m

n - m

 Y   Y  
Y =

 Y   Y  
                                                   (9) 

 

Inasmuch as there are no injections at buses 1, ,m n , 

we can leave them out in order to obtain 

 

1 1

R

m m

I V

Y

I V

                                                            (10) 

 

where -1

R 1 2 4 3
Y = Y - Y Y Y  is the desired reduced 

matrix. The reduced matrices for every network condition 

(pre-fault, during and after fault) are calculated on account 

of the power system under study. 
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2.4. PSS Structure Network 

 

A widely speed based used conventional lead-lag 

PSS is considered throughout the study [19-20]. It can 
be described as 

1 3

2 4

1 1

1 1 1

PSS PSSW

PSS PSS

W PSS PSS

sT sTsT
V K

sT sT sT
    (11) 

The structure comprises a gain block with gain 

PSSK , as well as a signal washout block and two-stage 

phase compensation blocks. The input signal of the 

proposed method is the speed deviation ( )  and the 

output is the stabilizing signal ( )PSSV , which is 

supplemented to the reference excitation system 
voltage. The signal washout block serves as a high-pass 

filter, with the time constant ( )WT , high enough to 

allow signals associated with oscillations in the input 

signal to pass unchanged. From the washout function's 

point of view, the value of WT  is not critical and can be 

within the range of 1 to 20 seconds [2]. The phase 

compensation block (time constants 1PSST , 2PSST  and 

3PSST , 4PSST ) yields the promising phase-lead 

characteristics in order to make up for the phase lag 

between input signals and output signals. 

 

3. PSO Technique 
 

A novel population based optimization approach, 

known as particle swarm optimization (PSO) approach, 

was initially presented in [16]. This new approach 

includes a number of advantages. It is facile, fast and 

can be coded in few lines as well as its storage 

requirement is minimal [17]. 

In addition, this approach is advantageous over 

evolutionary and genetic algorithms in some ways. 

First, PSO has memory. In other words, every particle 
remembers its best solution (local best) and the group's 

best solution (global best). One further advantage of 

PSO arises from the fact that the initial population of 

the PSO is maintained and therefore not required 

applying operators to the population, a process that is 

time and memory storage consuming [16-17]. 

In PSO based method, the trajectory of each 

individual situated in the search space is modified by 

dynamically changing each particle's velocity, in line 

with its own flying experience and other particles' 

flying experience in the search space. The position and 

ith particle's velocity vectors in the D-dimensional 

search space is stated as 1 2,, ,i i i idX x x x  and 

1 2,, ,i i i idV v v v . In accordance with a user defined 

fitness function, suppose that the best position of each 

particle, which corresponds to the best fitness value 

(pbest) acquired by that particle at time, be 

1 2,, ,i i i idP p p p , and the global version of the 

PSO keeps track of the overall best value (gbest), and 

its location, acquired thus far by any particle in the 

population. So, the new velocities and the positions of 

particles for the next fitness evaluation are represented as 

follows [17,21]: 

 
( 1) ( ) ( ) ( )

1 1

( ) ( )

2 2

( ) ( )

             ( ) ( )

t t t t

id id id id

t t

gd id

v w v c r p x

c r p x
                              (12) 

 
( 1) ( ) ( 1)t t t

id id idx x v
                                                       (13) 

 

where, 
idp  and gdp  are pbest and gbest. The positive 

constants 
1c  and 

2c  are the cognitive and social 

components, which are the acceleration constants 

responsible for varying the particle velocity towards pbest 

and gbest, respectively. Variables 
1r  and 

2r  are chosen as 

two random functions based on uniform probability 

distribution functions in the range [0,  1] . The inertia 

weight w  responsible for balancing between local and 

global searches and therefore necessitating less iteration for 

the algorithm to converge [22]. The inertia weight is given 

in (12) as follows: 

 

max min

max

max

w w
w w iter

iter
                                            (14) 

where, maxiter  is the iterations' maximum number and 

iter is the iteration's current number. Equation (14) 

describes how the inertia weight is updated, assuming maxw  

and minw  are the initial and final weights, respectively. 

 

4. Proposed Design Approach 
 

In this section the proposed approach is illustrated as 

follows. First, the location of the PSS is identified in a 

multi-machine power system using participation factor 
technique [23]. Then, PSO technique is proposed in this 

paper to search for optimal parameters setting. 
 

G2 G3

G1

1

2 3

4

5 6

7 8 9

Load A Load B

Load C

 
 

Figure 1. System under study 

 

4.1. Test System and Optimal PSS Location 
 
In this study, three-machine, nine-bus power system 

shown in Figure 1 is considered. This is also the system 

appearing in [1] and [19] and widely used in the literature. 
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The base MVA is 100, and system frequency is 60 Hz. 

The system data are given in Appendix A. The system 

has been modeled in the Matlab/SIMULINK environment 

using (1)-(11).  

 
Table 1. System eigenvalue and participation factor analysis 

 

Eigenvalues Frequency Damping Ratio 
Machine Participation Factor 

G1 G2 G3 

-1.3738 ± 11.7499i 1.8828 0.1161 0.0087 0.2388 1 

-0.3831 ± 7.8846i 1.2563 0.0485 0.4634 1 0.2001 

 
 

Table 2. Optimal PSS parameters using PSO and GA technique 
 

Type of algorithm PSSK  
1PSST  

2PSST  
3PSST  

4PSST  

PSO 7.0277 0.7526 0.0100 0.5454 0.4598 

GA 3.8745 0.2574 0.0278 0.3168 0.0308 

 

The open loop system eigenvalue and participation 

factor analysis shown in Table 1. The second 

electromechanical mode has a very low damping ratio 

equal to (0.0485) in which Generator no. 2 has the 

significant participation factor of that mode. Therefore, 

optimal PSS is located at machine number 2. 
 

4.2. Objective function and PSS tuning 

 
In the likelihood of the above-mentioned lead-lag 

structured PSS, the washout time constant is usually 

indicated. This paper uses washout time constant as 

10WT  sec. The stabilizer gain 
PSSK  and the time 

constants 
1PSST , 

2PSST , 
3PSST  and 

4PSST  are to be 

determined. It should be noted that the PSS is planned 

to minimize the power system oscillations following a 

large disturbance so as to enhance the power system 

stability. In this paper, the Integral of Absolute Error 

(IAE) of the speed deviations is used as the objective 

function formulated as 

 

2 1 3 1
0

(| | | |). 
simt

J dt                            (15) 

 

where 1 , 2  and 3  are the rotor speed of 

machine 1, 2 and 3 respectively, and simt  is the time 

range of simulation. By virtue of objective function 

calculation, the time-domain simulation of the power 

system model is carried out for the simulation period. It 
is intended to minimize this objective function so as to 

enhance the system response with regard to the settling 

time and overshoots. 

The problem restraints are the optimized parameter 

bounds. Thus, the design problem can be formulated as 

the following optimization problem: 

Minimize J  depending on 

 
min max

PSS PSS PSSK K K                                                   (16) 

 
min max

1 1 1PSS PSS PSST T T                                                    (17) 

 
min max

2 2 2PSS PSS PSST T T                                                   (18) 

 
min max

3 3 3PSS PSS PSST T T                                                           (19) 

 
min max

4 4 4PSS PSS PSST T T                                                          (20) 

 

Ordinary ranges of these parameters are 0.01 100  for 

PSSK  and 0.01 1  for 
1PSST , 

2PSST , 
3PSST  and 

4PSST  [19]. 

In this study, the optimized parameters are PSSK , 
1PSST , 

2PSST , 
3PSST  and 

4PSST , and the number of optimized 

parameters is 5. The proposed approach employs PSO 

algorithm in order to solve this optimization problem and 

search for optimal set of PSS parameters. The optimization 
of the PSS parameters is carried out through assessment of 

the objective function as given in (15). 
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Figure 2. Variation of objective function for GA and PSO 
algorithms 

 

In order to acquire better performance, swarm size, 

iteration's number, 1c , 2c , maxw  and minw  are selected as 

20, 100, 2, 2, 0.9 and 0.4, respectively. It is worth 

mentioning that PSO algorithm is run numerous times and 

later optimal set of PSS parameters is chosen. PSS 

parameter's results set values using both the proposed PSO 

method and GA method (see Appendix B) are given in 

Table 2. Figure 2 shows the convergence rate objective 

function J  with the number of generations employing the 

proposed PSO method and GA method. 
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5. Nonlinear time-domain simulation  
 

To assess the effectiveness of the proposed PSS, 

nonlinear time-domain simulation studies are 

implemented on different severe fault conditions for 

three cases. The following cases are taken into 

consideration:  

Case 1: In this case, the performance of the 

proposed controller under transient conditions is 

substantiated by applying a 6-cycle three-phase fault at 

1t  sec, on bus 7 at the end of line 5-7 is considered. 

The fault cleared without line tripping and the original 

system is restored upon the clearance of the fault. The 

system response to this disturbance is given in Figures 

3-6. It can be seen from the figures that power system 

oscillations are insufficiently damped without 

controller, albeit the system is stable.  Stability of the 

system is maintained and power system oscillations are 

effectively suppressed with the application of GA 
based PSS. It is also clear from figures that, unlike GA 

based PSS, the performance of the PSO based PSS is 

quite outstanding, and the overshoots and settling time 

are considerably enhanced in favor of the proposed 

controller.  
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Figure 4. Response of 3 1  for case 1 
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Figure 5. Response of 
2 1

 for case 1 

 

0 1 2 3 4 5 6 7 8 9 10
-8

-6

-4

-2

0

2

4

6

8
x 10

-3

Time (sec)

3
-

1
  

(r
a
d
/s

e
c
)

 

 

No Control

GAPSS

PSOPSS

 
 

Figure 6. Response of 
3 1

 for case 1 

 

Case 2: In this case, additional severe disturbance is 

taken into consideration; that is, a 6 cycle, three-phase fault 

is employed at the identical above-mentioned location in 
case 1. The fault is cleared by permanent tripping of the 

faulted line. The system response for the above contingency 

is given in Figures 7-10. It is clear from the figures that the 

system is unstable without control under severe 

disturbance. It is also evident that the PSO-based PSS 

realizes good performance and provides superior damping 

by comparison with the GA-based PSS. 
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Figure 7. Response of 2 1  for case 2 
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Figure 8. Response of 
3 1

 for case 2 
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Figure 9. Response of 
2 1

 for case 2 
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Figure 10. Response of 3 1  for case 2 

 

Case 3: The effectiveness of proposed PSS is also 

verified under different location and fault clearing 

time; that is, a 15 cycle three-phase fault is applied on 
bus 8 at the end of line 8-9 is considered. The fault 

cleared without line tripping and the original system is 

restored upon the clearance of the fault. The system 

response to this disturbance is shown in Figures 11-14. 

It can be seen from the figures that the system, during 

the severe disturbances, is unstable without control.  In 

addition, the figures demonstrate that the proposed 

PSO-based optimized PSS yields the desired dynamic 

performance and outperforms the GA-based PSS 

through minimizing the transient errors and then 

swiftly stabilizing the system.   
In order to demonstrate performance of the 

proposed technique, four performance indices that 

reflect the settling time and overshoot are introduced. 

They are expressed as [24] 
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Figure 11. Response of 
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 for case 3 

 

0 1 2 3 4 5 6 7 8 9 10

-20

0

20

40

60

80

100

Time (sec)

3
-

1
  

(d
e
g

re
e

)

 

 

No Control

GAPSS

PSOPSS

 
 

Figure 12. Response of 
3 1

 for case 3 
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Figure 13. Response of 2 1  for case 3 
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Figure 14. Response of 3 1  for case 3 

 

5 2 2

2 1 3 1
0

10 (( ) ( ) ). 
simt

ISE dt                    (21) 

 

3

2 1 3 1
0

10 (| | | |). 
simt

IAE dt                       (22) 
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3

2 1 3 1
0

10 .(| | | |). 
simt

ITAE t dt           (23) 

 

5 2 2

2 1 3 1
0

10 .(( ) ( ) ). 
simt

ITSE t dt         (24) 

 

The values of these indices with the different cases are 

given in Table 3. It is clear that the values of these indices 

by the PSO-based tuned PSS are much smaller in compared 

with GA-based tuned PSS. Indeed, it shows that the settling 

time and the speed deviations of machine are importantly 

diminished through employing the proposed PSO-based 

tuned PSS. 
 

Table 3. Values of performance indices 
 

Fault Case Algorithm 
Compare Index 

ISE IAE ITAE ITSE 

Case 1 
GA 5.5314 13.2633 13.7257 3.1155 

PSO 4.2819 8.9001 5.5493 1.7082 

Case 2 
GA 13.8789 34.7647 92.6242 22.5547 

PSO 5.4911 12.8057 12.4814 2.9242 

Case 3 
GA 49.7664 44.1104 54.3617 41.3764 

PSO 45.9617 35.7897 32.1148 33.9310 

 

6. Conclusions  

 

A damping controller design for the PSS is 

employed in this research so as to evaluate the transient 

stability and damp the power system oscillations after 

fault effectively. Controller design problem is 

expressed as an optimization problem, and the PSO 

algorithm is successfully employed to search for the 

optimal solution of the design problem. The 

performance of the proposed controller is demonstrated 

by a three-machine nine-bus power system through the 
simulation studies. The nonlinear time-domain 

simulation results reveal the proposed controller's 

effectiveness and its ability to yield good damping of 

low frequency oscillations. The system performance 

characteristics show that the PSO technique is 

advantageous over the GA method in terms its 

computational complexity, solution quality and success 

rate.  

The system performance characteristics regarding 

„ISE‟, „IAE‟, „ITAE‟ and „ITSE‟ indices show that by 

using the proposed PSO based PSS damping controller, 

the overshoot, settling time and power system low 
frequency oscillations are immensely diminished 

during major severe disturbances.  
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APPENDIX A 
 

Data for the studied three-machine nine-bus power 

system. All data are in pu unless specified otherwise. 

For further information, see Ref. [19].   

1 23.64H , 2 6.4H , 3 3.01H , 1 2 3 0D D D , 

1 0.146dx , 2 0.8958dx , 3 1.3125dx , 

1 0.0969qx , 2 0.8645qx , 3 1.2578qx , 

1 0.0608dx , 2 0.1198dx , 3 0.1813dx , 

1 8.96doT , 2 6.0doT , 3 5.89doT  

Exciter: 

1 2 3 100A A AK K K , 1 2 3 0.05A A AT T T  

 

APPENDIX B 
 

Based on the mechanism of the natural selection 
and survival of the fittest, genetic algorithms are 

considered as stochastic search methods [25]. 

Moreover, they integrate function evaluation with 

randomized and/or well-structured exchange of 

information amongst the solutions in order to achieve 

the global optimum point. The architecture of the GA 

implementation may be divided into following three 

basic steps: initial population generation, fitness 

evaluation and genetic operations. The GA control 

parameters, like population size, mutation probability 

and crossover probability, are chosen and a first 

population of the binary strings of the finite length is 
randomly generated [26]. Given a random initial 

population GA operates in cycles called generations, as 

follows [25]: 

 Every population member is assessed by employing a 

fitness function. 

 The population undergoes reproduction through several 

iterations. At least one parent is selected stochastically. 

Still, strings possessing higher fitness values would have 

higher probability of contributing an offspring. 

 In order to produce offspring, genetic operators, like 

crossover and mutation, are assigned to parents. 

 The offspring are placed in the population and the 

procedure is rerun. 

 

The time-domain simulation is carried out and the 

fitness function, as shown in (15), is optimized so as to 

arrive at the optimal set of controller parameters. While 

applying GA, parameters' figure must be indicated. 

Optimization is terminated by the generations' pre-specified 

figure for the genetic algorithm.  
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