Research Article
BibTex RIS Cite

Solar Simulator Design and Production for Solar Collector Test

Year 2018, , 55 - 62, 03.08.2018
https://doi.org/10.21541/apjes.356801

Abstract

In this study, a solar simulator with a size of 140x250 cm was established to test the solar collectors in the laboratory. Inside of the simulator, 46 pieces of 400 W and 4 pieces of 1000 W halogen lamps were used. The lamps were divided into four groups and their light intensities were adjusted with dimmers. The simulator provided an average intensity of 1080 W/m2 radiation from the 100x200 cm central area. Greenhouse shading material was used on the simulator and the average radiation value was reduced to 896 W/m2. A flat plate solar collector was tested with the prepared simulator. The tests were carried out at 25, 40, 60 and 80 oC constant fluid input temperatures and a standard flow rate of 0.02 kg/s m2. The efficiency of the tested collector was calculated as 72-48% of the working temperature range and the pressure drop of the collector was measured 19.4 pascal. Independently from the variable environmental conditions, flat plate or U-pipe vacuum tube solar collectors could be tested and their efficiency curves could be generated with the designed and established simulator.

References

  • TS EN ISO 9806, “Güneş enerjisi- Güneş kollektörleri- Deney metotlar”, 2014.
  • M. Shatat, S. Riffat, F. Agyenim, “Experimental testing method for solar light simulator with an attached evacuated solar collector”, International Journal of Energy and Environment, 4(2), 219-230, 2013.
  • Köse İsmail İ., “Düzlemsel güneş kollektörlerinde boru içerisinde kıvrılmış şerit kullanımının ısı transferine etkisinin deneysel incelenmesi”, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans tezi, 57s., 2011.
  • S.C. Solanki, S. Dubey, A. Tiwari, “Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors”, Applied Energy, 86, 2421-2428, 2003.
  • K. Sopian, Supranto, W.R.W. Daud, M.Y. Othman, B. Yatim, “Thermal performance of the double-pass solar collector with and without porous media”, Renewable Energy”, 18, 557-564, 1999.
  • C. Domínguez, I. Antón, G. Sala, “Solar simulator for concentrator photovoltaic systems”, Optics Express, 16(19), 14894-14901, 2008.
  • M.G. Guvenc, C. Gurcan, K. Durgin, D. MacDonald, “Solar Simulator and I-V Measurement System For Large Area Solar Cell Testing”, Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition, 3659, (2004).
  • D.S. Codd, A. Carlson, J. Rees, A.H. Slocum, “A low cost high flux solar simülatör”, Solar Energy, 84, 2202-2212, 2010.
  • Q. Meng, Y. Wang, L. Zhang, “Irradiance characteristics and optimization design of a large-scale solar simulator”, Solar Energy, 85, 1758-1767, 2011.
  • A. Ozsoy, S. Demirer, N.M. Adam, “An experimental study on double-glazed flat plate solar water heating system in Turkey”, Applied Mechanics and Materials, 564, 204-209, 2014.
  • A. Garcia, R.H. Martin, J.P. Garcia, “Experimental study of heat transfer enhancement in a flat-plate solar water collector with wire-coil inserts” Applied Thermal Engineering, 6, 461-468, 2013.
  • A. Kumar, B.N. Prasad, “Investigation of twisted tape inserted solar water heaters-heat transfer, friction factor and thermal performance results”, Renewable Energy, 19, 379-398, 2000.

Güneş Kollektörü Testi için Güneş Simülatör Tasarımı ve İmalatı

Year 2018, , 55 - 62, 03.08.2018
https://doi.org/10.21541/apjes.356801

Abstract

Bu çalışmada güneş kollektörlerinin laboratuvar ortamında test edilebilmesi için 140x250 cm büyüklüğünde bir güneş simülatörü oluşturulmuştur. Simülatörde 46 adet 400 W ve 4 adet 1000 W halojen lamba kullanılmış, lambalar dört gruba ayrılarak dimmerlerle ışınım şiddetleri ayarlanmıştır. Simülatörün 100x200 cm’lik orta alanında ortalama 1080 W/m2 ışınım şiddeti sağlanmıştır. Simülatöre sera filesi ile gölgeleme yapılarak ışınım şiddeti 896 W/m2’ye düşürülmüştür. Hazırlanan simülatörde bir düzlemsel güneş kollektörü 25, 40, 60 ve 80 oC sabit akışkan giriş sıcaklıklarında ve 0.02 kg/s m2 standart akışkan debisiyle test edilmiştir. Kollektör verimi çalışılan sıcaklık aralığında %72-48 arasında hesaplanmış ve kollektördeki basınç düşümü de 19.4 paskal olarak ölçülmüştür. Tasarımı yapılıp üretimi gerçekleştirilen güneş simülatörüyle, dış ortamın değişken şartlarından bağımsız olarak, düzlemsel veya U-borulu vakum tüplü güneş kollektörleri standarda uygun olarak test edilip, kollektör verim eğrileri oluşturulabilecektir.

References

  • TS EN ISO 9806, “Güneş enerjisi- Güneş kollektörleri- Deney metotlar”, 2014.
  • M. Shatat, S. Riffat, F. Agyenim, “Experimental testing method for solar light simulator with an attached evacuated solar collector”, International Journal of Energy and Environment, 4(2), 219-230, 2013.
  • Köse İsmail İ., “Düzlemsel güneş kollektörlerinde boru içerisinde kıvrılmış şerit kullanımının ısı transferine etkisinin deneysel incelenmesi”, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans tezi, 57s., 2011.
  • S.C. Solanki, S. Dubey, A. Tiwari, “Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors”, Applied Energy, 86, 2421-2428, 2003.
  • K. Sopian, Supranto, W.R.W. Daud, M.Y. Othman, B. Yatim, “Thermal performance of the double-pass solar collector with and without porous media”, Renewable Energy”, 18, 557-564, 1999.
  • C. Domínguez, I. Antón, G. Sala, “Solar simulator for concentrator photovoltaic systems”, Optics Express, 16(19), 14894-14901, 2008.
  • M.G. Guvenc, C. Gurcan, K. Durgin, D. MacDonald, “Solar Simulator and I-V Measurement System For Large Area Solar Cell Testing”, Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition, 3659, (2004).
  • D.S. Codd, A. Carlson, J. Rees, A.H. Slocum, “A low cost high flux solar simülatör”, Solar Energy, 84, 2202-2212, 2010.
  • Q. Meng, Y. Wang, L. Zhang, “Irradiance characteristics and optimization design of a large-scale solar simulator”, Solar Energy, 85, 1758-1767, 2011.
  • A. Ozsoy, S. Demirer, N.M. Adam, “An experimental study on double-glazed flat plate solar water heating system in Turkey”, Applied Mechanics and Materials, 564, 204-209, 2014.
  • A. Garcia, R.H. Martin, J.P. Garcia, “Experimental study of heat transfer enhancement in a flat-plate solar water collector with wire-coil inserts” Applied Thermal Engineering, 6, 461-468, 2013.
  • A. Kumar, B.N. Prasad, “Investigation of twisted tape inserted solar water heaters-heat transfer, friction factor and thermal performance results”, Renewable Energy, 19, 379-398, 2000.
There are 12 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ahmet Özsoy 0000-0003-0911-9799

Mustafa Galip This is me

Publication Date August 3, 2018
Submission Date November 21, 2017
Published in Issue Year 2018

Cite

IEEE A. Özsoy and M. Galip, “Güneş Kollektörü Testi için Güneş Simülatör Tasarımı ve İmalatı”, APJES, vol. 6, no. 2, pp. 55–62, 2018, doi: 10.21541/apjes.356801.