Research Article
BibTex RIS Cite
Year 2019, , 377 - 383, 30.12.2019
https://doi.org/10.18466/cbayarfbe.523332

Abstract

References

  • 1. Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., ... & Grassineau, N. V. 2002. Questioning the evidence for Earth's oldest fossils. Nature, 416(6876), 76.
  • 2. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146-1151.7
  • 3. González‐Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. 2012. Impact of microalgae characteristics on their conversion to biofuel. Part I: Focus on cultivation and biofuel production. Biofuels, Bioproducts and Biorefining, 6(1), 105-113.
  • 4. Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renewable and Sustainable Energy Reviews, 35, 265-278.
  • 5. Lee, R., Phycology. Cambridge [England]: Cambridge University Press., 4th ed., 1999, pp.213-217.
  • 6. Abu-Ghosh, S., Fixler, D., Dubinsky, Z. and Iluz, D. 2015. Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae. Bioresource Technology, 187, 144-148.
  • 7. Carvalho, A., Silva, S., Baptista, J. and Malcata, F. 2010. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Applied Microbiology Biotechnology, 89(5), 1275-1288.
  • 8. Yılmaz, H. K. 2006. Mikroalg Üretimi için Fotobiyoreaktör Tasarımları. EÜ Su Ürünleri Dergisi, 23(1/2), 327-332.
  • 9. Walker, T. L., Purton, S., Becker, D. K., & Collet, C. 2005. Microalgae as bioreactors. Plant cell reports, 24(11), 629-641.
  • 10. Kim, J., Lee, J. and Lu, T. 2015. A model for autotrophic growth of Chlorella vulgaris under photolimitation and photoinhibition in cylindrical photobioreactor. Biochemical Engineering Journal, 99, 55-60.
  • 11. Andersen, R. A. (Ed.). 2005. Algal culturing techniques. Elsevier.
  • 12. ATCC Medium: 616 Medium BG-11 for Blue-green Algae, www.atcc.org
  • 13. Shuler, M. and Kargi, F., Bioprocess engineering. Upper Saddle River, NJ: Prentice Hall 2002.
  • 14. Jeffrey, S.W., Humphrey, G.F. 1975. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Journal of Plant Biochemistry Physiology, 167, 191–194.
  • 15. Pottier, L., Pruvost, J., Deremetz, J., Cornet, J., Legrand, J. and Dussap, C. 2005. A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torus photobioreactor. Biotechnology and Bioengineering, 91(5), 569-582.

Production of Chlorella sp. in a Designed Photobioreactor

Year 2019, , 377 - 383, 30.12.2019
https://doi.org/10.18466/cbayarfbe.523332

Abstract

Click here for manuscript sample template

Microalgae are
photosynthetic microorganisms which are recently grown to produce biomass for food, pharmaceutical, dye, and bioenergy industries. Microalgae are the
carbon source found in crude oil and natural gas. Over the years, there
have been several advances in the design and operation of closed photobioreactors
for microalgal cultures based on new reactor geometries as well as optimized aeration
and mixing strategies. Closed photobioreactors ensure heat
control, and high production through effective use of high-intensity light and prevent contamination in microalgae
production. One of the most important factors that
control cell growth in a photobioreactor is light availability. In this study,
cultivation of Chlorella sp., as
microalgae were performed in a specially
designed photobioreactor for productivity analysis and the pigment capacity
analysis. The applied light energy was kept constant while applying either
continuous or intermittent lighting during the growth of microalgae. The
cultivation parameters were tested to find the optimal light mode as the continuous
light or 12h light/ 12h dark cycle to maximize pigment amount. In order to
determine the pigment amount in the cultivated algae extraction was done. Then
by using UV spectrophotometer amount of chlorophyll a and b were determined in
the obtained extracts.

References

  • 1. Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., ... & Grassineau, N. V. 2002. Questioning the evidence for Earth's oldest fossils. Nature, 416(6876), 76.
  • 2. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146-1151.7
  • 3. González‐Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. 2012. Impact of microalgae characteristics on their conversion to biofuel. Part I: Focus on cultivation and biofuel production. Biofuels, Bioproducts and Biorefining, 6(1), 105-113.
  • 4. Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renewable and Sustainable Energy Reviews, 35, 265-278.
  • 5. Lee, R., Phycology. Cambridge [England]: Cambridge University Press., 4th ed., 1999, pp.213-217.
  • 6. Abu-Ghosh, S., Fixler, D., Dubinsky, Z. and Iluz, D. 2015. Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae. Bioresource Technology, 187, 144-148.
  • 7. Carvalho, A., Silva, S., Baptista, J. and Malcata, F. 2010. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Applied Microbiology Biotechnology, 89(5), 1275-1288.
  • 8. Yılmaz, H. K. 2006. Mikroalg Üretimi için Fotobiyoreaktör Tasarımları. EÜ Su Ürünleri Dergisi, 23(1/2), 327-332.
  • 9. Walker, T. L., Purton, S., Becker, D. K., & Collet, C. 2005. Microalgae as bioreactors. Plant cell reports, 24(11), 629-641.
  • 10. Kim, J., Lee, J. and Lu, T. 2015. A model for autotrophic growth of Chlorella vulgaris under photolimitation and photoinhibition in cylindrical photobioreactor. Biochemical Engineering Journal, 99, 55-60.
  • 11. Andersen, R. A. (Ed.). 2005. Algal culturing techniques. Elsevier.
  • 12. ATCC Medium: 616 Medium BG-11 for Blue-green Algae, www.atcc.org
  • 13. Shuler, M. and Kargi, F., Bioprocess engineering. Upper Saddle River, NJ: Prentice Hall 2002.
  • 14. Jeffrey, S.W., Humphrey, G.F. 1975. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Journal of Plant Biochemistry Physiology, 167, 191–194.
  • 15. Pottier, L., Pruvost, J., Deremetz, J., Cornet, J., Legrand, J. and Dussap, C. 2005. A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torus photobioreactor. Biotechnology and Bioengineering, 91(5), 569-582.
There are 15 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Büsra Ak This is me

Eylem Atak This is me

Merve Deniz Köse

Oğuz Bayraktar This is me

Publication Date December 30, 2019
Published in Issue Year 2019

Cite

APA Ak, B., Atak, E., Köse, M. D., Bayraktar, O. (2019). Production of Chlorella sp. in a Designed Photobioreactor. Celal Bayar University Journal of Science, 15(4), 377-383. https://doi.org/10.18466/cbayarfbe.523332
AMA Ak B, Atak E, Köse MD, Bayraktar O. Production of Chlorella sp. in a Designed Photobioreactor. CBUJOS. December 2019;15(4):377-383. doi:10.18466/cbayarfbe.523332
Chicago Ak, Büsra, Eylem Atak, Merve Deniz Köse, and Oğuz Bayraktar. “Production of Chlorella Sp. In a Designed Photobioreactor”. Celal Bayar University Journal of Science 15, no. 4 (December 2019): 377-83. https://doi.org/10.18466/cbayarfbe.523332.
EndNote Ak B, Atak E, Köse MD, Bayraktar O (December 1, 2019) Production of Chlorella sp. in a Designed Photobioreactor. Celal Bayar University Journal of Science 15 4 377–383.
IEEE B. Ak, E. Atak, M. D. Köse, and O. Bayraktar, “Production of Chlorella sp. in a Designed Photobioreactor”, CBUJOS, vol. 15, no. 4, pp. 377–383, 2019, doi: 10.18466/cbayarfbe.523332.
ISNAD Ak, Büsra et al. “Production of Chlorella Sp. In a Designed Photobioreactor”. Celal Bayar University Journal of Science 15/4 (December 2019), 377-383. https://doi.org/10.18466/cbayarfbe.523332.
JAMA Ak B, Atak E, Köse MD, Bayraktar O. Production of Chlorella sp. in a Designed Photobioreactor. CBUJOS. 2019;15:377–383.
MLA Ak, Büsra et al. “Production of Chlorella Sp. In a Designed Photobioreactor”. Celal Bayar University Journal of Science, vol. 15, no. 4, 2019, pp. 377-83, doi:10.18466/cbayarfbe.523332.
Vancouver Ak B, Atak E, Köse MD, Bayraktar O. Production of Chlorella sp. in a Designed Photobioreactor. CBUJOS. 2019;15(4):377-83.