Research Article
BibTex RIS Cite

Production and Properties of Al/NbB2 In-situ Composite

Year 2021, Volume: 36 Issue: 4, 891 - 900, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1040472

Abstract

In this study, NbB2 particle reinforced composites in Al matrix were produced by in-situ method. The effects of particle reinforcement at different ratios and production time on composites were investigated. The size and spatial distribution of the formed particles were examined, and the effect on grain size and hardness was determined. As a result of the studies, it was determined that the mixing time is as important as the alloying ratio in the formation of particles, and the best values were obtained in the 3.75% NbB2 added composite, which was formed after 1.5 hours of mixing. In this composite, the grain size was reduced to 112 μm and the hardness was 306.4 MPa.

References

  • 1. Fale, S., Likhite, A., Bhatt, J., 2014. The Wear Behavior of in-situ Al–AlN Metal Matrix Composites. Trans. Indian Inst. Met. 67, 841–849.
  • 2. Li, P., Kandalova, E.G., Nikitin, V.I., 2005. In Situ Synthesis of Al–TiC in Aluminum Melt. Mater. Lett. 59, 2545–2548.
  • 3. Wang, H., Li, G., Zhao, Y., Chen, G., 2010. In Situ Fabrication and Microstructure of Al2O3 Particles Reinforced Aluminum Matrix Composites. Mater. Sci. Eng. A, 527, 2881–2885.
  • 4. Niranjan, K., Lakshminarayanan, P.R., 2013. Dry Sliding Wear Behaviour of in Situ Al–TiB2 Composites. Mater. Des., 47, 167–173.
  • 5. Mandal, A., Chakraborty, M., Murty, B.S., 2007. Effect of TiB2 Particles on Sliding Wear Behaviour of Al–4Cu Alloy. Wear., 262, 160–166.
  • 6. Kai, W., Yang, J.M., Harrigan Jr, W.C., 1989. Mechanical Behavior of B4C Particulate-reinforced 7091 Aluminum Composite. Scr. Metall., 23, 1277–1280.
  • 7. Wang, S.H., Kao, P.W., 1998. The Strengthening Effect of Al3Ti in High Temperature Deformation of Al–Al3Ti Composites. Acta Mater. 46, 2675–2682.
  • 8. Feng, C.F., Froyen, L., 1997. In-situ Synthesis of Al2O3 and TiB2 Particulate Mixture Reinforced Aluminium Matrix Composites. Scr. Mater. 36, 467–473.
  • 9. Lakshmi, S., Lu, L., Gupta, M., 1998. In Situ Preparation of TiB2 Reinforced Al Based Composites. J. Mater. Process. Technol., 73, 160–166.
  • 10. Ramesh, C.S., Ahamed, A., Channabasappa, B.H., Keshavamurthy, R., 2010. Development of Al 6063–TiB2 in Situ Composites. Mater. Des., 31, 2230–2236.
  • 11. Wang, F., Ma, N., Li, Y., Li, X., Wang, H., 2011. Impact Behavior of in Situ TiB2/Al Composite at Various Temperatures. J. Mater. Sci. 46, 5192–5196.
  • 12. Antonio, J.A.M., Lfo, L.F.M., 1971. Grain Refinement in Aluminum Alloyed with Titanium and Boron. Metall. Trans., 2, 465–471.
  • 13. Murty, B.S., Kori, S.A., Chakraborty, M., 2002. Grain Refinement of Aluminium and its Alloys by Heterogeneous Nucleation and Alloying. Int. Mater. Rev., 47, 3–29.
  • 14. Johnsson, M., 1994. Influence of Si and Fe on the Grain Refinement of Aluminium. Zeitschrift Fur Met., 85, 781–785.
  • 15. Nadendla, H.B., 2015. Al-Nb-B Master Alloy for Grain Refining.
  • 16. Bolzoni, L., Nowak, M., Babu, N.H., 2015. On the Effect of Nb-based Compounds on the Microstructure of Al–12Si Alloy. Mater. Chem. Phys. 162, 340–345.
  • 17. Balcı, Ö., Ağaoğulları, D., Ovalı, D., Öveçoğlu, M.L., Duman, I., 2015. In Situ Synthesis of NbB2–NbC Composite Powders by Milling-assisted Carbothermal Reduction of Oxide Raw Materials. Adv. Powder Technol., 26, 1200–1209.
  • 18. Tekoğlu, E., Ağaoğulları, D., Mertdinç, S., Paksoy, A.H., Öveçoğlu, M.L., 2018. Microstructural Characterizations and Mechanical Properties of NbB2 and VB Particulate-reinforced Eutectic Al-12.6 wt% Si Composites Via Powder Metallurgy Method. Adv. Powder Technol., 29, 2070–2081.
  • 19. Pramod, S.L., Bakshi, S.R., Murty, B.S., 2015. Aluminum-based Cast in Situ Composites: a Review. J. Mater. Eng. Perform., 24, 2185–2207.
  • 20. Di Sabatino, M., Shankar, S., Apelian, D., Arnberg, L., 2005. Influence of Temperature and Alloying Elements on Fluidity of Al-Si Alloys. in: TMS-Shape Cast. Symp., 2005.
  • 21. Xu, J., Li, Y., Hu, B., Jiang, Y., Li, Q., 2019. Development of Al–Nb–B Master Alloy with High Nb/B Ratio for Grain Refinement of Hypoeutectic Al–Si Cast Alloys. J. Mater. Sci. 54, 14561–14576. https://doi.org/10.1007/ s10853-019-03915-9.
  • 22. Witusiewicz, V.T., Bondar, A.A., Hecht, U., Zollinger, J., Velikanova, T.Y., 2014. The Al– B–Nb–Ti System. VI. Experimental Studies and Thermodynamic Modeling of the Constituent Al–B–Nb System. J. Alloys Compd. 587, 234–250. https://doi.org/10.1016/ j.jallcom.2013.10.142.
  • 23. Mohanty, P.S., Gruzleski, J.E., 1995. Mechanism of Grain Refinement in Aluminium. Acta Metall. Mater., 43, 2001–2012.
  • 24. Maxwell, I., Hellawell, A., 1975. A Simple Model for Grain Refinement During Solidification. Acta Metall. 23, 229–237.
  • 25. Alpas, A.T., Zhang, J., 1994. Effect of Microstructure (Particulate Size and Volume Fraction) and Counterface Material on the Sliding Wear Resistance of Particulate-reinforced Aluminum Matrix Composites. Metall. Mater. Trans. A., 25, 969–983.
  • 26. Hall, E.O., 1951. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sect. B., 64, 747.

Al/NbB2 In-Situ Kompozit Üretimi ve Özelliklerinin İncelenmesi

Year 2021, Volume: 36 Issue: 4, 891 - 900, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1040472

Abstract

Bu çalışmada in-situ yöntemi ile Al matriste NbB2 partikül takviyeli kompozitler üretilmiştir. Farklı oranlarda partikül takviyesinin ve üretim süresinin kompozitler üzerindeki etkileri incelenmiştir. Oluşan partiküller, boyutları ve dağılımları incelenmiş, tane boyutu ve sertliğe etkisi belirlenmiştir. Yapılan çalışmalar neticesinde partikül oluşumunda karıştırma süresinin kullanılan alaşım oranı gibi önemli olduğu belirlenmiş ve en iyi değerler 1,5 saat karıştırma sonucu oluşan %3,75 NbB2 ilaveli kompozitte elde edilmiştir. Bu kompozitte tane boyutu 112 μm seviyelerine inmiştir ve sertlik 306,4 MPa olmuştur.

References

  • 1. Fale, S., Likhite, A., Bhatt, J., 2014. The Wear Behavior of in-situ Al–AlN Metal Matrix Composites. Trans. Indian Inst. Met. 67, 841–849.
  • 2. Li, P., Kandalova, E.G., Nikitin, V.I., 2005. In Situ Synthesis of Al–TiC in Aluminum Melt. Mater. Lett. 59, 2545–2548.
  • 3. Wang, H., Li, G., Zhao, Y., Chen, G., 2010. In Situ Fabrication and Microstructure of Al2O3 Particles Reinforced Aluminum Matrix Composites. Mater. Sci. Eng. A, 527, 2881–2885.
  • 4. Niranjan, K., Lakshminarayanan, P.R., 2013. Dry Sliding Wear Behaviour of in Situ Al–TiB2 Composites. Mater. Des., 47, 167–173.
  • 5. Mandal, A., Chakraborty, M., Murty, B.S., 2007. Effect of TiB2 Particles on Sliding Wear Behaviour of Al–4Cu Alloy. Wear., 262, 160–166.
  • 6. Kai, W., Yang, J.M., Harrigan Jr, W.C., 1989. Mechanical Behavior of B4C Particulate-reinforced 7091 Aluminum Composite. Scr. Metall., 23, 1277–1280.
  • 7. Wang, S.H., Kao, P.W., 1998. The Strengthening Effect of Al3Ti in High Temperature Deformation of Al–Al3Ti Composites. Acta Mater. 46, 2675–2682.
  • 8. Feng, C.F., Froyen, L., 1997. In-situ Synthesis of Al2O3 and TiB2 Particulate Mixture Reinforced Aluminium Matrix Composites. Scr. Mater. 36, 467–473.
  • 9. Lakshmi, S., Lu, L., Gupta, M., 1998. In Situ Preparation of TiB2 Reinforced Al Based Composites. J. Mater. Process. Technol., 73, 160–166.
  • 10. Ramesh, C.S., Ahamed, A., Channabasappa, B.H., Keshavamurthy, R., 2010. Development of Al 6063–TiB2 in Situ Composites. Mater. Des., 31, 2230–2236.
  • 11. Wang, F., Ma, N., Li, Y., Li, X., Wang, H., 2011. Impact Behavior of in Situ TiB2/Al Composite at Various Temperatures. J. Mater. Sci. 46, 5192–5196.
  • 12. Antonio, J.A.M., Lfo, L.F.M., 1971. Grain Refinement in Aluminum Alloyed with Titanium and Boron. Metall. Trans., 2, 465–471.
  • 13. Murty, B.S., Kori, S.A., Chakraborty, M., 2002. Grain Refinement of Aluminium and its Alloys by Heterogeneous Nucleation and Alloying. Int. Mater. Rev., 47, 3–29.
  • 14. Johnsson, M., 1994. Influence of Si and Fe on the Grain Refinement of Aluminium. Zeitschrift Fur Met., 85, 781–785.
  • 15. Nadendla, H.B., 2015. Al-Nb-B Master Alloy for Grain Refining.
  • 16. Bolzoni, L., Nowak, M., Babu, N.H., 2015. On the Effect of Nb-based Compounds on the Microstructure of Al–12Si Alloy. Mater. Chem. Phys. 162, 340–345.
  • 17. Balcı, Ö., Ağaoğulları, D., Ovalı, D., Öveçoğlu, M.L., Duman, I., 2015. In Situ Synthesis of NbB2–NbC Composite Powders by Milling-assisted Carbothermal Reduction of Oxide Raw Materials. Adv. Powder Technol., 26, 1200–1209.
  • 18. Tekoğlu, E., Ağaoğulları, D., Mertdinç, S., Paksoy, A.H., Öveçoğlu, M.L., 2018. Microstructural Characterizations and Mechanical Properties of NbB2 and VB Particulate-reinforced Eutectic Al-12.6 wt% Si Composites Via Powder Metallurgy Method. Adv. Powder Technol., 29, 2070–2081.
  • 19. Pramod, S.L., Bakshi, S.R., Murty, B.S., 2015. Aluminum-based Cast in Situ Composites: a Review. J. Mater. Eng. Perform., 24, 2185–2207.
  • 20. Di Sabatino, M., Shankar, S., Apelian, D., Arnberg, L., 2005. Influence of Temperature and Alloying Elements on Fluidity of Al-Si Alloys. in: TMS-Shape Cast. Symp., 2005.
  • 21. Xu, J., Li, Y., Hu, B., Jiang, Y., Li, Q., 2019. Development of Al–Nb–B Master Alloy with High Nb/B Ratio for Grain Refinement of Hypoeutectic Al–Si Cast Alloys. J. Mater. Sci. 54, 14561–14576. https://doi.org/10.1007/ s10853-019-03915-9.
  • 22. Witusiewicz, V.T., Bondar, A.A., Hecht, U., Zollinger, J., Velikanova, T.Y., 2014. The Al– B–Nb–Ti System. VI. Experimental Studies and Thermodynamic Modeling of the Constituent Al–B–Nb System. J. Alloys Compd. 587, 234–250. https://doi.org/10.1016/ j.jallcom.2013.10.142.
  • 23. Mohanty, P.S., Gruzleski, J.E., 1995. Mechanism of Grain Refinement in Aluminium. Acta Metall. Mater., 43, 2001–2012.
  • 24. Maxwell, I., Hellawell, A., 1975. A Simple Model for Grain Refinement During Solidification. Acta Metall. 23, 229–237.
  • 25. Alpas, A.T., Zhang, J., 1994. Effect of Microstructure (Particulate Size and Volume Fraction) and Counterface Material on the Sliding Wear Resistance of Particulate-reinforced Aluminum Matrix Composites. Metall. Mater. Trans. A., 25, 969–983.
  • 26. Hall, E.O., 1951. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sect. B., 64, 747.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hüseyin Demirtaş 0000-0002-2442-2158

Erdem Karakulak This is me 0000-0003-3246-6422

Hari Babu Nadenla This is me 0000-0003-4894-7052

Publication Date December 29, 2021
Published in Issue Year 2021 Volume: 36 Issue: 4

Cite

APA Demirtaş, H., Karakulak, E., & Nadenla, H. B. (2021). Al/NbB2 In-Situ Kompozit Üretimi ve Özelliklerinin İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(4), 891-900. https://doi.org/10.21605/cukurovaumfd.1040472