Research Article
BibTex RIS Cite

Effect of Chitosan Biopolymer Obtained from Shrimp Wastes on Antibacterial Properties of Woolen Fabrics

Year 2017, Volume: 32 Issue: 3, 47 - 54, 15.09.2017
https://doi.org/10.21605/cukurovaummfd.357189

Abstract

In this study, chitosan biopolymers were obtained by chemical method from the deep water pink shrimp (Parapenaeous longirostris) shells in Turkey. The biopolymer of the produced chitosan was applied by immersion in woven woven fabrics at 3 different concentrations to give antibacterial properties. According to the results of the antibacterial activity test performed on the woolen fabric according to the AATCC-100 standard, over 99% of the activity against bacterial strains of K.pneumoniae and S.aureus was obtained in the fabric subjected to chitosan biopolymerization. The results show that shrimp shells, which can not be assessed in Turkey and separated as waste, can be used by converting them into antibacterial polymers that can also be used on textiles.

References

  • 1. Abdou, E.S., K.S.A., Nagy, M.Z., 2008. Elsabee, Extraction and Characterization of Chitin and Chitosan from Local Sources. Bioresource Technology, 99(5): p. 1359-1367.
  • 2. Wu, J.Y., 2008. Research on Mechanism of Deacetylation of Chitin. Rare Metal Materials and Engineering, 37: 718-722.
  • 3. Shin, Y., Yoo, D.I., Min, K., 1999. Antimicrobial Finishing of Polypropylene Nonwoven Fabric by Treatment with Chitosan Oligomer. Journal of Applied Polymer Science, 74(12): 2911-2916.
  • 4. Erra, P., Molina, R., Jocic, D.M., Julia, R., Cuesta, A., Tascon, J.M.D., 1999. Shrinkage Properties of Wool Treated with Low Temperature Plasma and Chitosan Biopolymer. Textile Research Journal, 69(11): 811-815.
  • 5. Hu, S.G., C.H. Jou, M.C., 2002. Yang, Surface Grafting of Polyester Fiber with Chitosan and the Antibacterial Activity of Pathogenic Bacteria. Journal of Applied Polymer Science, 86(12): 2977-2983.
  • 6. Oktem, T., 2003. Surface Treatment of Cotton Fabrics with Chitosan. Coloration Technology, 119(4): 241-246.
  • 7. El-Tahlawy, K.F., El-bendary A., Elhendawy, A.G., Hudson, S.M., 2005. The Antimicrobial Activity of Cotton Fabrics Treated With Different Crosslinking Agents and Chitosan. Carbohydrate Polymers, 60(4): 421-430.
  • 8. Tseng, H-J., Hsu, S., Wu, M-W., Hsueh, T-H., Tu, P-C., 2009. Nylon Textiles Grafted with Chitosan by Open Air Plasma and their Antimicrobial Effect. Fibers and Polymers, 10(1): 53-59.
  • 9. Higazy, A., Hashem, M., Shafei, A.E., Hady, M.A., 2010. Development of Antimicrobial Jute Packaging using Chitosan and Chitosan-metal Complex. Carbohydrate Polymers, 79(4): 867-874.
  • 10. Hebeish, A., Abdel-Mohdyet, F.A., Fouda, M.M.G., Elsaid, Z., Essam, S., Tammam, G.H., Dreesc, E.A., 2011. Green Synthesis of Easy Care and Antimicrobial Cotton Fabrics. Carbohydrate Polymers, 86(4): 1684-1691.
  • 11. Kucukgulmez, A., Celik, M., Yanar, Y., Sen, D., Polat, H., Kadak, E., 2011. Physicochemical Characterization of Chitosan Extracted from Metapenaeus Stebbingi Shells. Food Chemistry, 126(3): 1144-1148.
  • 12. Tolaimate, A.J., Desbrières, M., Rhazi Alagui A., Vincendon, M., Vottero, P., 2000. On the Influence of Deacetylation Process on the Physicochemical Characteristics of Chitosan from Squid Chitin. Polymer, 41(7): 2463-2469.
  • 13. Wang, Q.Z., Chen, X.G., Liu, N.S., Wang, X.C., Liu, S.X., Meng, H., Liu, C.G., 2006. Protonation Constants of Chitosan with Different Molecular Weight and Degree of Deacetylation. Carbohydrate Polymers, 65(2): 194-201.
  • 14. Wang, J.C., Kinsella, J.E., 1976. Functional Properties of Novel Proteins: Alfalfa Leaf Protein. Journal of Food Science, 41(2): 236.
  • 15. Jeon, Y.J., Park, P.J., Kim, S.K., 2001. Antimicrobial Effect of Chitooligosaccharides Produced by Bioreactor. Carbohydrate Polymers, 44(1): 71-76.
  • 16. Tsai, G.J., Su, W.H., Chen, H.C., Pan, C.L., 2002. Antimicrobial Activity of Shrimp Chitin and Chitosan from Different Treatments and Applications of Fish Preservation. Fisheries Science, 68(1): 170-177.

Karides Atıklarından Elde Edilen Kitosan Biyopolimerinin Yünlü Kumaşların Antibakteriyel Özellikleri Üzerine Etkisi

Year 2017, Volume: 32 Issue: 3, 47 - 54, 15.09.2017
https://doi.org/10.21605/cukurovaummfd.357189

Abstract

Bu çalışmada Türkiye’de avcılığı yapılan derin su pembe karidesi (Parapenaeous longirostris) kabuklarından kimyasal yöntem kullanılarak kitosan biyopolimeri elde edilmiştir. Üretilen kitosanın biyopolimeri antibakteriyel özellikler kazandırmak için 3 farklı konsantrasyonda dokunmuş yünlü kumaşlara daldırma metodu ile uygulanmıştır. AATCC-100 standardına göre yünlü kumaşa gerçekleştirilen antibakteriyel aktivite testinin sonuçlarına göre kitosan biyopolimeri uygulanmış kumaşta K.pneumoniae ve S.aureus bakterilerine karşı %99’un üzerinde aktivite elde edilmiştir. Sonuçlar, Türkiye'de değerlendirilemeyen ve atık olarak ayrılan karides kabuklarının tekstilde de kullanılabilecek antibakteriyel polimere dönüştürülmesi ile kullanılabileceğini göstermiştir.

References

  • 1. Abdou, E.S., K.S.A., Nagy, M.Z., 2008. Elsabee, Extraction and Characterization of Chitin and Chitosan from Local Sources. Bioresource Technology, 99(5): p. 1359-1367.
  • 2. Wu, J.Y., 2008. Research on Mechanism of Deacetylation of Chitin. Rare Metal Materials and Engineering, 37: 718-722.
  • 3. Shin, Y., Yoo, D.I., Min, K., 1999. Antimicrobial Finishing of Polypropylene Nonwoven Fabric by Treatment with Chitosan Oligomer. Journal of Applied Polymer Science, 74(12): 2911-2916.
  • 4. Erra, P., Molina, R., Jocic, D.M., Julia, R., Cuesta, A., Tascon, J.M.D., 1999. Shrinkage Properties of Wool Treated with Low Temperature Plasma and Chitosan Biopolymer. Textile Research Journal, 69(11): 811-815.
  • 5. Hu, S.G., C.H. Jou, M.C., 2002. Yang, Surface Grafting of Polyester Fiber with Chitosan and the Antibacterial Activity of Pathogenic Bacteria. Journal of Applied Polymer Science, 86(12): 2977-2983.
  • 6. Oktem, T., 2003. Surface Treatment of Cotton Fabrics with Chitosan. Coloration Technology, 119(4): 241-246.
  • 7. El-Tahlawy, K.F., El-bendary A., Elhendawy, A.G., Hudson, S.M., 2005. The Antimicrobial Activity of Cotton Fabrics Treated With Different Crosslinking Agents and Chitosan. Carbohydrate Polymers, 60(4): 421-430.
  • 8. Tseng, H-J., Hsu, S., Wu, M-W., Hsueh, T-H., Tu, P-C., 2009. Nylon Textiles Grafted with Chitosan by Open Air Plasma and their Antimicrobial Effect. Fibers and Polymers, 10(1): 53-59.
  • 9. Higazy, A., Hashem, M., Shafei, A.E., Hady, M.A., 2010. Development of Antimicrobial Jute Packaging using Chitosan and Chitosan-metal Complex. Carbohydrate Polymers, 79(4): 867-874.
  • 10. Hebeish, A., Abdel-Mohdyet, F.A., Fouda, M.M.G., Elsaid, Z., Essam, S., Tammam, G.H., Dreesc, E.A., 2011. Green Synthesis of Easy Care and Antimicrobial Cotton Fabrics. Carbohydrate Polymers, 86(4): 1684-1691.
  • 11. Kucukgulmez, A., Celik, M., Yanar, Y., Sen, D., Polat, H., Kadak, E., 2011. Physicochemical Characterization of Chitosan Extracted from Metapenaeus Stebbingi Shells. Food Chemistry, 126(3): 1144-1148.
  • 12. Tolaimate, A.J., Desbrières, M., Rhazi Alagui A., Vincendon, M., Vottero, P., 2000. On the Influence of Deacetylation Process on the Physicochemical Characteristics of Chitosan from Squid Chitin. Polymer, 41(7): 2463-2469.
  • 13. Wang, Q.Z., Chen, X.G., Liu, N.S., Wang, X.C., Liu, S.X., Meng, H., Liu, C.G., 2006. Protonation Constants of Chitosan with Different Molecular Weight and Degree of Deacetylation. Carbohydrate Polymers, 65(2): 194-201.
  • 14. Wang, J.C., Kinsella, J.E., 1976. Functional Properties of Novel Proteins: Alfalfa Leaf Protein. Journal of Food Science, 41(2): 236.
  • 15. Jeon, Y.J., Park, P.J., Kim, S.K., 2001. Antimicrobial Effect of Chitooligosaccharides Produced by Bioreactor. Carbohydrate Polymers, 44(1): 71-76.
  • 16. Tsai, G.J., Su, W.H., Chen, H.C., Pan, C.L., 2002. Antimicrobial Activity of Shrimp Chitin and Chitosan from Different Treatments and Applications of Fish Preservation. Fisheries Science, 68(1): 170-177.
There are 16 citations in total.

Details

Journal Section Articles
Authors

Emel Ceyhun Sabır

Mahmut Taş This is me

Aygül Küçükgülmez This is me

Publication Date September 15, 2017
Published in Issue Year 2017 Volume: 32 Issue: 3

Cite

APA Sabır, E. C., Taş, M., & Küçükgülmez, A. (2017). Karides Atıklarından Elde Edilen Kitosan Biyopolimerinin Yünlü Kumaşların Antibakteriyel Özellikleri Üzerine Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(3), 47-54. https://doi.org/10.21605/cukurovaummfd.357189
AMA Sabır EC, Taş M, Küçükgülmez A. Karides Atıklarından Elde Edilen Kitosan Biyopolimerinin Yünlü Kumaşların Antibakteriyel Özellikleri Üzerine Etkisi. cukurovaummfd. September 2017;32(3):47-54. doi:10.21605/cukurovaummfd.357189
Chicago Sabır, Emel Ceyhun, Mahmut Taş, and Aygül Küçükgülmez. “Karides Atıklarından Elde Edilen Kitosan Biyopolimerinin Yünlü Kumaşların Antibakteriyel Özellikleri Üzerine Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32, no. 3 (September 2017): 47-54. https://doi.org/10.21605/cukurovaummfd.357189.
EndNote Sabır EC, Taş M, Küçükgülmez A (September 1, 2017) Karides Atıklarından Elde Edilen Kitosan Biyopolimerinin Yünlü Kumaşların Antibakteriyel Özellikleri Üzerine Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32 3 47–54.
IEEE E. C. Sabır, M. Taş, and A. Küçükgülmez, “Karides Atıklarından Elde Edilen Kitosan Biyopolimerinin Yünlü Kumaşların Antibakteriyel Özellikleri Üzerine Etkisi”, cukurovaummfd, vol. 32, no. 3, pp. 47–54, 2017, doi: 10.21605/cukurovaummfd.357189.
ISNAD Sabır, Emel Ceyhun et al. “Karides Atıklarından Elde Edilen Kitosan Biyopolimerinin Yünlü Kumaşların Antibakteriyel Özellikleri Üzerine Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32/3 (September 2017), 47-54. https://doi.org/10.21605/cukurovaummfd.357189.
JAMA Sabır EC, Taş M, Küçükgülmez A. Karides Atıklarından Elde Edilen Kitosan Biyopolimerinin Yünlü Kumaşların Antibakteriyel Özellikleri Üzerine Etkisi. cukurovaummfd. 2017;32:47–54.
MLA Sabır, Emel Ceyhun et al. “Karides Atıklarından Elde Edilen Kitosan Biyopolimerinin Yünlü Kumaşların Antibakteriyel Özellikleri Üzerine Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 32, no. 3, 2017, pp. 47-54, doi:10.21605/cukurovaummfd.357189.
Vancouver Sabır EC, Taş M, Küçükgülmez A. Karides Atıklarından Elde Edilen Kitosan Biyopolimerinin Yünlü Kumaşların Antibakteriyel Özellikleri Üzerine Etkisi. cukurovaummfd. 2017;32(3):47-54.