BibTex RIS Cite

Drought stress and plant physiology

Year 2015, Volume: 32 Issue: 2, 237 - 250, 28.12.2015
https://doi.org/10.16882/derim.2015.90060

Abstract

Drought stress has been an important issue nowadays in plant production because of the decline in quantity and quality of water resources in the world and it leads to alter the normal physiological function of the economically high valued plants. This situation makes cultivation of plants tolerant to high stress more crucial. Therefore, current studies are mostly focused on the explaining the tolerance mechanisms of highly drought resistant plants and protecting and transforming of the plant genetic sources. In this paper, drought effects on the plants, plant physiological reactions to drought and adaptation mechanisms of the plants are explained by referring important researches done in the recent years.

References

  • Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stres. African Journal of Agricultural Research, 6: 2026-2032.
  • Ashraf, M. (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13(1): 17-42.
  • Ashraf, M., McNeilly, T., & Bradshaw, A.D. (1996). The potential for evaluation of salt (NaCl) tolerance of seven grass species. New Phytologist, 103: 299-309.
  • Ashraf, M., & Arfan, M. (2005). Gas exchange characteristics and water relations in two cultivars of Hibicus esculentus under waterlogging. Biologia Plantarum, 49 (3): 459-462.
  • Barlow, E.W.R., Lee, J.W., Munns, R., & Smart, M.G. (1980). Water relations of developing wheat grains. Australian Journal of Plant Physiology, 7: 519–525.
  • Behbodian, M. H. (2003). Responses of eggplant to drought. I. Plant water balance. Scientia Horticulturae, 7: 303–310.
  • Belkhodja, R. Morales, F., Abadia, A., & Gomez-Aparisi, J. (1994). Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiology, 104: 667- 673.
  • Bhargava, S., & Sawant, K. (2013). Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding, 132: 21-32.
  • Blum, A. (1985). Breeding crop varieties for stres environments. Critial Reviews in Plant Sciences, 2(3): 199-238.
  • Bouslama, M., & Schapanagh, W.T. (1984). Stress tolerance in soybeans 1. Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24: 933-937.
  • Bray, E. (1997). Plant responses to water deficit. Trends in Plant Science, 2: 48-54.
  • Bray, E.A. (2002). Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell and Environment, 25: 153-161.
  • Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sánchez, G., & Peñuelas, J. (2011). Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. The Proceedings of the National Academy of Sciences of the USA, 108: 1474–1478.
  • Chaves, M.M. (1991). Effects of water deficits on carbon assimilation. Journal of Experimental Botany, 42: 1–16.
  • Chaves, M.M., Maroco, J.P., & Pereira, J.S. (2003). Understanding plant responses to drought – from genes to the whole plant. Functional Plant Biology, 30: 239–264.
  • Cheong, Y.H., Kim, K.N., Pandey, G.K., Gupta, R., Grant, J.J., & Luan, S. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant Cell, 15: 1833–1845.
  • Cabello, J.V., Lodeyro, A.F., & Zurbriggen, M. (2014). Novel perspectives for the engineering of abiotic sress tolerance in plants. Current Opinion in Biotechnology, 26: 62-70.
  • Dolferus, R. (2014). To grow or not to grow: A stressful decision for plants. Plant Science, 2229: 247-261.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29: 185-212.
  • Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T.D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6: 269–279.
  • Flexas, J., Diaz-Espejo, A., Galme´s, J., Kaldenhoff, R., Medrano, H., & Ribas-Carbo, M. (2007). Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant, Cell & Environment, 30: 1284–1298.
  • Gallardo, M., Thompson, R.B., Valdez, L.C., & Pêrez, C. (2004). Response of stem diameter to water stress in greenhouse-grown vegetable crops. Acta Horticulturae, 664: 253-260.
  • Ganieva, R., Allahverdiev, S., Bayromova, S., & Nafisi, S. (1997). Effect of polystimuline- K on maize (Zea mays L.) seedlings pigment apparatus formation on the sodium chloride salinity.Turkish Journal of Botany, 21: 253-257.
  • Guy, C.L., Niemi, K.J., & Brambi, R. (1985). Altered gene expression during cold acclimation of spinach. The Proceedings of the National Academy of Sciences of the USA, 82: 3673-3677.
  • Günay, A. (2005). Sebze Yetiştiriciliği. Cilt I, ISBN 975-00725-0-2, İzmir.
  • Gürel, A., & Avcıoğlu, R. (2001). Bitkilerde Abiyotik Stres Faktörlerine Dayanıklılık Mekanizmaları. pp.288-326. In: Özcan, S., Gürel, E. & Babaoğlu, M. (Eds.), Bitki Biyoteknolojisi, Genetik Mühendisliği, S.Ü. Vakfı Yayınları, Izmir.
  • Hamada, E.A.M., Homoud, M.A., Kirkwood, R.C., & El-Sayed, H. (1992). Studies on the adaptation of selected species of the Family Gramineae A. Juss to Salinization. Afaeddes Repertorium, 103: 128-798.
  • Hazen, S.P., Pathan, M.S., Sanchez, A., Baxter, I., Dunn, M., Estes, B., Chang, H.S., Zhu, T., Kreps, J.A., & Nguyen, H.T. (2005). Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Functional and Integrative Genomics, 5: 104–116.
  • Jones, M.M., & Turner, N.C. (1978). Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiology, 61: 122-126.
  • Kaçar, B. (2015). Genel Bitki Fizyolojisi, Nobel Akademik Yayıncılık, Yayın No: 1243, Ankara.
  • Kalefetoğlu, T., & Ekmekçi, Y. (2005). The effects of drought on plants and tolerance mechanisms. Gazi Üniversitesi Fen Bilimleri Dergisi, 18 (4): 723-740.
  • Karipçin, Z.M. (2009). Yerli ve yabani karpuz genotiplerinde kuraklığa toleransın belirlenmesi. Doktora Tezi, Çukurova Üniversitesi, Adana.
  • Kayabaşı, S. (2011). Kuraklık stresinde yetiştirilen soyada (Glycine max L.) bazı fizyolojik parametreler ile prolin birikiminin araştırılması. Yüksek Lisans Tezi, Harran Üniversitesi, Şanlıurfa.
  • Kawasaki, S., Miyake, C., Kohchi, T., Fujii, S., Uchida, M., & Yokata, A. (2000). Responses of wild watermelon to drought stress: Accumulation of an ArgE homologue and citrulline in leaves during water deficits. Plant and Cell Physiology, 41(7): 864-873.
  • Kılıç, S. (2008). Küresel iklim değişikliği sürecinde su yönetimi, İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, 39: 161-186.
  • Kramer, G.F., & Wang, C.Y. (1990). Effects of chilling and temperature preconditioning on the activity of polyamine biosynthetic enzymes in zucchini squash. Journal of Plant Physiology, 36(1): 115-119.
  • Kusvuran, S., Dasgan, H.Y., & Abak, K., (2013). Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon. The Scientific World Journal, Article ID 253414, 8 pages, http://dx.doi.org/10.1155/2013/253414. Erişim tarihi: 15 Eylül 2015.
  • Liang, X., Zhang, L., Natarajan, S.K., & Becker, D.F. (2013). Proline mechanism of stress survival. Antioxidants & Redox Signaling, 19: 998-1011.
  • Liu, F., & Stutzel, H. (2004). Biomass partitioning, specific leaf area and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 102 (1): 15-27.
  • Liu, X., & Baird, W.V. (2004). Identification of a novel gene, HAABRC5, from Helianthus annuus (Asteraceae) that is upregulated in response to drought, salinity, and abscisic acid. American Journal of Botany, 91: 184–191.
  • McKimmie, T., & Dobrenz, A.K. (1991). Ionic concentrations and water relations of alfalfa seedlings differing in salt tolerance. Agronomy Journal, 83: 363-367.
  • Mengü, G.P., Anaç, S., & Özçakal, E. (2011). Kuraklık yönetim stratejileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 48 (2): 175-181.
  • Mishra, A.K., & Singh, V.P. (2010). A review of drought concepts. Journal of Hydrology, 391: 202–216.
  • Miyake, C., & Yokota, A. (2000). Determination of the rate of photoreduction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis. Plant Cell Physiology, 41: 335-342.
  • Morgan, J.M. (1995). Growth and yield of wheat lines with differing osmoregulative capacity at high oil water deficit in seasons of varying evaporative demand. Field Crops Research, 40: 143-152.
  • Mundree, S.G., Baker, B., Mowla, S., Peters, S., Marais, S., Willigen, C.V., Govender, K., Maredza, A., Muyanga, S., Farrant, J.M., & Thomson, J.A. (2002). Physiological and molecular insights into drought tolerance. African Journal of Biotechnology, 1:23-38.
  • Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L.P. (2014). Response of plants to water stress. Front Plant Science, 5: 86.
  • Öztürk, N.Z. (2015). Bitkilerin kuraklık stresine tepkilerinde bilinenler ve yeni yaklaşımlar. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 3(5): 307-315.
  • Peng, C., Ma., Z., Lei, X., Zhu, Q., Chen, H., Wang, W., Liu, S., Li, W., Fang, X., & Zhou, X., (2011). A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 1: 467–71.
  • Razzaghi, F., Jacobsen, S.E., Jensen, C.R., & Andersen, M.N. (2014). Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought – mechanisms of tolerance. Functional Plant Biology, 42(2): 136-148.
  • Ruiz-Lozano, J.M., Porcel, R., Bárzana, G., Azcón, R., & Aroca, R. (2012). Contribution of arbuscular mycorrhizal symbiosis to plant drought tolerance: state of the art. pp. 335–362. In: Aroca, R. (Ed.), Plant Responses to Drought Stress Springer-Verlag, Heidelberg.
  • Sağlam, A. (2004). Ağır kuraklık stresi geçirmiş Ctenanthe setosa bitkisinin yeni kuraklık koşullarına adaptasyon yeteneğinin araştırılması. Yüksek Lisans Tezi. Karadeniz Teknik Üniversitesi, Trabzon.
  • Salama, S., Trivedi, S., Busheva, M., Arafa, A.A., Garab, G., & Erdei, L. (1994). Effects of NaCl salinity on growth, cation accumulation, chloroplast syructure and function in wheat cultivars differing in salt tolerance. Journal of Plant Physiology, 144 (2): 241-247.
  • Salisbury, F.B., & Ross, C.W. (1992). Plant Physiology. Wadsworth Publishing Co., California.
  • Sharma, P.K., & Hall, D.O. (1992). Changes in carotenoid composition and photosynthesis in sorghum under highlight and salt stresses. Journal of Plant Physiology, 140: 661-666.
  • Shubha, V., & Tyagi, A.K. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnology Journal, 5 (3): 361-380.
  • Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125: 27-58.
  • Şahin, Ü., & Kurnaz, L. (2014). İklim Değişikliği ve Kuraklık. İstanbul Politikalar Merkezi, Kuraklık Raporu, İstanbul.
  • Talame, V., Ozturk, N.Z., Bohnert, H.J., & Tuberosa, R. (2007). Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. Journal of Experimental Botany, 58: 229–240.
  • Tari, I., Camen, D., Coradını, G., Csiszar, J., Feıuc, E., Gêmes, K., Lazar, A., Madosa, E., Mıhacea, S., Poor, P., Postelnıcu, S., Staıcu, M., Szepesı, A., Nedelea, A., & Erdeı, L. (2008). Changes in chlorophyll fluorescence parameters and oxidative stress responses of bush bean genotypes for selecting contrasting acclimation strategies under water stress. Acta Biologica Hungarica, 59 (3): 335-345.
  • Tatar, Ö. (2009). C3 grubu tahıllarda su kullanım etkinliğini arttırmaya yönelik stratejiler: Fizyolojik ve agronomik yaklaşımlar. I. Ulusal Kuraklık ve Çölleme Sempozyumu, 16-18 Haziran, Konya, s. 832-836.
  • Teuling, A.J., van Loon, A., Seneviratne, S.I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., & Spank, U. (2013). Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40 (10): 2071-2075.
  • Williams, A.P., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., Swetnam, T.W., Rauscher, S.A., Seager, R., Grissino- Mayer, H.D., Dean, J.S., Cook, E.R., Gangodagamage, C., Cai, M., & McDowell, N.G. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3:292–297.
  • Wyn Jones, R.G. (1981). Salt Tolerance. pp. 271- 292. In:Johansan, C.B. (Ed), Physiological Processes Limiting Plant Productivity, Butter Worths, Londan.
  • Vicente-Serrano, S.M., Lopez-Moreno, J., Beguería, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J.M., Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F., & Espejo, F. (2014). Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9: 044001, doi:10.1088/1748-9326/9/4/044001.
  • Yokota, A., Kawasaki, S., Iwano, M., Nakamura, C., Miyake, C., & Akashi, K. (2002). Citrulline and DRIP-1 protein in drought tolerance of wild watermelon. Annals of Botany, 89: 825–832.
  • Ziska, L.H., Seemann, J.R., & DeJong, T.M. (1990). Salinity induced limitations on photosynthesis in Prunus salinica, a deciduous tree species. Plant Physiology, 93: 864-870.

Kuraklık stresi ve bitki fizyolojisi

Year 2015, Volume: 32 Issue: 2, 237 - 250, 28.12.2015
https://doi.org/10.16882/derim.2015.90060

Abstract

Dünya çapında su kaynaklarının miktar ve niteliklerinde meydana gelen düşüşler nedeniyle kuraklık stresi bitki yetiştiriciliğinde her geçen gün önemli hale gelmekte ve ekonomik öneme sahip bitkilerin normal fizyolojik işlevlerinde değişikliklere yol açmaktadır. Bu durum stres koşullarına dayanıklı bitki türlerinin yetiştiriciliğini ön plana çıkarmaktadır. Ayrıca, stres koşularına dayanıklı bitki türlerinin tolerans mekanizmalarının açıklanması, bitkisel gen kaynaklarının korunması ve aktarımı gibi çalışmalar giderek önem arz etmektedir. Bu çalışmada kuraklığın bitkiler üzerindeki etkileri, bitkilerin gösterdikleri fizyolojik reaksiyonlar ve adaptasyon mekanizmaları son yıllarda yapılmış olan önemli çalışmalar referans alınarak açıklanmıştır.

References

  • Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stres. African Journal of Agricultural Research, 6: 2026-2032.
  • Ashraf, M. (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13(1): 17-42.
  • Ashraf, M., McNeilly, T., & Bradshaw, A.D. (1996). The potential for evaluation of salt (NaCl) tolerance of seven grass species. New Phytologist, 103: 299-309.
  • Ashraf, M., & Arfan, M. (2005). Gas exchange characteristics and water relations in two cultivars of Hibicus esculentus under waterlogging. Biologia Plantarum, 49 (3): 459-462.
  • Barlow, E.W.R., Lee, J.W., Munns, R., & Smart, M.G. (1980). Water relations of developing wheat grains. Australian Journal of Plant Physiology, 7: 519–525.
  • Behbodian, M. H. (2003). Responses of eggplant to drought. I. Plant water balance. Scientia Horticulturae, 7: 303–310.
  • Belkhodja, R. Morales, F., Abadia, A., & Gomez-Aparisi, J. (1994). Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiology, 104: 667- 673.
  • Bhargava, S., & Sawant, K. (2013). Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding, 132: 21-32.
  • Blum, A. (1985). Breeding crop varieties for stres environments. Critial Reviews in Plant Sciences, 2(3): 199-238.
  • Bouslama, M., & Schapanagh, W.T. (1984). Stress tolerance in soybeans 1. Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24: 933-937.
  • Bray, E. (1997). Plant responses to water deficit. Trends in Plant Science, 2: 48-54.
  • Bray, E.A. (2002). Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell and Environment, 25: 153-161.
  • Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sánchez, G., & Peñuelas, J. (2011). Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. The Proceedings of the National Academy of Sciences of the USA, 108: 1474–1478.
  • Chaves, M.M. (1991). Effects of water deficits on carbon assimilation. Journal of Experimental Botany, 42: 1–16.
  • Chaves, M.M., Maroco, J.P., & Pereira, J.S. (2003). Understanding plant responses to drought – from genes to the whole plant. Functional Plant Biology, 30: 239–264.
  • Cheong, Y.H., Kim, K.N., Pandey, G.K., Gupta, R., Grant, J.J., & Luan, S. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant Cell, 15: 1833–1845.
  • Cabello, J.V., Lodeyro, A.F., & Zurbriggen, M. (2014). Novel perspectives for the engineering of abiotic sress tolerance in plants. Current Opinion in Biotechnology, 26: 62-70.
  • Dolferus, R. (2014). To grow or not to grow: A stressful decision for plants. Plant Science, 2229: 247-261.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29: 185-212.
  • Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T.D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6: 269–279.
  • Flexas, J., Diaz-Espejo, A., Galme´s, J., Kaldenhoff, R., Medrano, H., & Ribas-Carbo, M. (2007). Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant, Cell & Environment, 30: 1284–1298.
  • Gallardo, M., Thompson, R.B., Valdez, L.C., & Pêrez, C. (2004). Response of stem diameter to water stress in greenhouse-grown vegetable crops. Acta Horticulturae, 664: 253-260.
  • Ganieva, R., Allahverdiev, S., Bayromova, S., & Nafisi, S. (1997). Effect of polystimuline- K on maize (Zea mays L.) seedlings pigment apparatus formation on the sodium chloride salinity.Turkish Journal of Botany, 21: 253-257.
  • Guy, C.L., Niemi, K.J., & Brambi, R. (1985). Altered gene expression during cold acclimation of spinach. The Proceedings of the National Academy of Sciences of the USA, 82: 3673-3677.
  • Günay, A. (2005). Sebze Yetiştiriciliği. Cilt I, ISBN 975-00725-0-2, İzmir.
  • Gürel, A., & Avcıoğlu, R. (2001). Bitkilerde Abiyotik Stres Faktörlerine Dayanıklılık Mekanizmaları. pp.288-326. In: Özcan, S., Gürel, E. & Babaoğlu, M. (Eds.), Bitki Biyoteknolojisi, Genetik Mühendisliği, S.Ü. Vakfı Yayınları, Izmir.
  • Hamada, E.A.M., Homoud, M.A., Kirkwood, R.C., & El-Sayed, H. (1992). Studies on the adaptation of selected species of the Family Gramineae A. Juss to Salinization. Afaeddes Repertorium, 103: 128-798.
  • Hazen, S.P., Pathan, M.S., Sanchez, A., Baxter, I., Dunn, M., Estes, B., Chang, H.S., Zhu, T., Kreps, J.A., & Nguyen, H.T. (2005). Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Functional and Integrative Genomics, 5: 104–116.
  • Jones, M.M., & Turner, N.C. (1978). Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiology, 61: 122-126.
  • Kaçar, B. (2015). Genel Bitki Fizyolojisi, Nobel Akademik Yayıncılık, Yayın No: 1243, Ankara.
  • Kalefetoğlu, T., & Ekmekçi, Y. (2005). The effects of drought on plants and tolerance mechanisms. Gazi Üniversitesi Fen Bilimleri Dergisi, 18 (4): 723-740.
  • Karipçin, Z.M. (2009). Yerli ve yabani karpuz genotiplerinde kuraklığa toleransın belirlenmesi. Doktora Tezi, Çukurova Üniversitesi, Adana.
  • Kayabaşı, S. (2011). Kuraklık stresinde yetiştirilen soyada (Glycine max L.) bazı fizyolojik parametreler ile prolin birikiminin araştırılması. Yüksek Lisans Tezi, Harran Üniversitesi, Şanlıurfa.
  • Kawasaki, S., Miyake, C., Kohchi, T., Fujii, S., Uchida, M., & Yokata, A. (2000). Responses of wild watermelon to drought stress: Accumulation of an ArgE homologue and citrulline in leaves during water deficits. Plant and Cell Physiology, 41(7): 864-873.
  • Kılıç, S. (2008). Küresel iklim değişikliği sürecinde su yönetimi, İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, 39: 161-186.
  • Kramer, G.F., & Wang, C.Y. (1990). Effects of chilling and temperature preconditioning on the activity of polyamine biosynthetic enzymes in zucchini squash. Journal of Plant Physiology, 36(1): 115-119.
  • Kusvuran, S., Dasgan, H.Y., & Abak, K., (2013). Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon. The Scientific World Journal, Article ID 253414, 8 pages, http://dx.doi.org/10.1155/2013/253414. Erişim tarihi: 15 Eylül 2015.
  • Liang, X., Zhang, L., Natarajan, S.K., & Becker, D.F. (2013). Proline mechanism of stress survival. Antioxidants & Redox Signaling, 19: 998-1011.
  • Liu, F., & Stutzel, H. (2004). Biomass partitioning, specific leaf area and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 102 (1): 15-27.
  • Liu, X., & Baird, W.V. (2004). Identification of a novel gene, HAABRC5, from Helianthus annuus (Asteraceae) that is upregulated in response to drought, salinity, and abscisic acid. American Journal of Botany, 91: 184–191.
  • McKimmie, T., & Dobrenz, A.K. (1991). Ionic concentrations and water relations of alfalfa seedlings differing in salt tolerance. Agronomy Journal, 83: 363-367.
  • Mengü, G.P., Anaç, S., & Özçakal, E. (2011). Kuraklık yönetim stratejileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 48 (2): 175-181.
  • Mishra, A.K., & Singh, V.P. (2010). A review of drought concepts. Journal of Hydrology, 391: 202–216.
  • Miyake, C., & Yokota, A. (2000). Determination of the rate of photoreduction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis. Plant Cell Physiology, 41: 335-342.
  • Morgan, J.M. (1995). Growth and yield of wheat lines with differing osmoregulative capacity at high oil water deficit in seasons of varying evaporative demand. Field Crops Research, 40: 143-152.
  • Mundree, S.G., Baker, B., Mowla, S., Peters, S., Marais, S., Willigen, C.V., Govender, K., Maredza, A., Muyanga, S., Farrant, J.M., & Thomson, J.A. (2002). Physiological and molecular insights into drought tolerance. African Journal of Biotechnology, 1:23-38.
  • Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L.P. (2014). Response of plants to water stress. Front Plant Science, 5: 86.
  • Öztürk, N.Z. (2015). Bitkilerin kuraklık stresine tepkilerinde bilinenler ve yeni yaklaşımlar. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 3(5): 307-315.
  • Peng, C., Ma., Z., Lei, X., Zhu, Q., Chen, H., Wang, W., Liu, S., Li, W., Fang, X., & Zhou, X., (2011). A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 1: 467–71.
  • Razzaghi, F., Jacobsen, S.E., Jensen, C.R., & Andersen, M.N. (2014). Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought – mechanisms of tolerance. Functional Plant Biology, 42(2): 136-148.
  • Ruiz-Lozano, J.M., Porcel, R., Bárzana, G., Azcón, R., & Aroca, R. (2012). Contribution of arbuscular mycorrhizal symbiosis to plant drought tolerance: state of the art. pp. 335–362. In: Aroca, R. (Ed.), Plant Responses to Drought Stress Springer-Verlag, Heidelberg.
  • Sağlam, A. (2004). Ağır kuraklık stresi geçirmiş Ctenanthe setosa bitkisinin yeni kuraklık koşullarına adaptasyon yeteneğinin araştırılması. Yüksek Lisans Tezi. Karadeniz Teknik Üniversitesi, Trabzon.
  • Salama, S., Trivedi, S., Busheva, M., Arafa, A.A., Garab, G., & Erdei, L. (1994). Effects of NaCl salinity on growth, cation accumulation, chloroplast syructure and function in wheat cultivars differing in salt tolerance. Journal of Plant Physiology, 144 (2): 241-247.
  • Salisbury, F.B., & Ross, C.W. (1992). Plant Physiology. Wadsworth Publishing Co., California.
  • Sharma, P.K., & Hall, D.O. (1992). Changes in carotenoid composition and photosynthesis in sorghum under highlight and salt stresses. Journal of Plant Physiology, 140: 661-666.
  • Shubha, V., & Tyagi, A.K. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnology Journal, 5 (3): 361-380.
  • Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125: 27-58.
  • Şahin, Ü., & Kurnaz, L. (2014). İklim Değişikliği ve Kuraklık. İstanbul Politikalar Merkezi, Kuraklık Raporu, İstanbul.
  • Talame, V., Ozturk, N.Z., Bohnert, H.J., & Tuberosa, R. (2007). Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. Journal of Experimental Botany, 58: 229–240.
  • Tari, I., Camen, D., Coradını, G., Csiszar, J., Feıuc, E., Gêmes, K., Lazar, A., Madosa, E., Mıhacea, S., Poor, P., Postelnıcu, S., Staıcu, M., Szepesı, A., Nedelea, A., & Erdeı, L. (2008). Changes in chlorophyll fluorescence parameters and oxidative stress responses of bush bean genotypes for selecting contrasting acclimation strategies under water stress. Acta Biologica Hungarica, 59 (3): 335-345.
  • Tatar, Ö. (2009). C3 grubu tahıllarda su kullanım etkinliğini arttırmaya yönelik stratejiler: Fizyolojik ve agronomik yaklaşımlar. I. Ulusal Kuraklık ve Çölleme Sempozyumu, 16-18 Haziran, Konya, s. 832-836.
  • Teuling, A.J., van Loon, A., Seneviratne, S.I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., & Spank, U. (2013). Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40 (10): 2071-2075.
  • Williams, A.P., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., Swetnam, T.W., Rauscher, S.A., Seager, R., Grissino- Mayer, H.D., Dean, J.S., Cook, E.R., Gangodagamage, C., Cai, M., & McDowell, N.G. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3:292–297.
  • Wyn Jones, R.G. (1981). Salt Tolerance. pp. 271- 292. In:Johansan, C.B. (Ed), Physiological Processes Limiting Plant Productivity, Butter Worths, Londan.
  • Vicente-Serrano, S.M., Lopez-Moreno, J., Beguería, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J.M., Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F., & Espejo, F. (2014). Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9: 044001, doi:10.1088/1748-9326/9/4/044001.
  • Yokota, A., Kawasaki, S., Iwano, M., Nakamura, C., Miyake, C., & Akashi, K. (2002). Citrulline and DRIP-1 protein in drought tolerance of wild watermelon. Annals of Botany, 89: 825–832.
  • Ziska, L.H., Seemann, J.R., & DeJong, T.M. (1990). Salinity induced limitations on photosynthesis in Prunus salinica, a deciduous tree species. Plant Physiology, 93: 864-870.
There are 67 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Selda Örs

Melek Ekinci

Publication Date December 28, 2015
Published in Issue Year 2015 Volume: 32 Issue: 2

Cite

APA Örs, S., & Ekinci, M. (2015). Kuraklık stresi ve bitki fizyolojisi. Derim, 32(2), 237-250. https://doi.org/10.16882/derim.2015.90060
AMA Örs S, Ekinci M. Kuraklık stresi ve bitki fizyolojisi. DERİM. December 2015;32(2):237-250. doi:10.16882/derim.2015.90060
Chicago Örs, Selda, and Melek Ekinci. “Kuraklık Stresi Ve Bitki Fizyolojisi”. Derim 32, no. 2 (December 2015): 237-50. https://doi.org/10.16882/derim.2015.90060.
EndNote Örs S, Ekinci M (December 1, 2015) Kuraklık stresi ve bitki fizyolojisi. Derim 32 2 237–250.
IEEE S. Örs and M. Ekinci, “Kuraklık stresi ve bitki fizyolojisi”, DERİM, vol. 32, no. 2, pp. 237–250, 2015, doi: 10.16882/derim.2015.90060.
ISNAD Örs, Selda - Ekinci, Melek. “Kuraklık Stresi Ve Bitki Fizyolojisi”. Derim 32/2 (December 2015), 237-250. https://doi.org/10.16882/derim.2015.90060.
JAMA Örs S, Ekinci M. Kuraklık stresi ve bitki fizyolojisi. DERİM. 2015;32:237–250.
MLA Örs, Selda and Melek Ekinci. “Kuraklık Stresi Ve Bitki Fizyolojisi”. Derim, vol. 32, no. 2, 2015, pp. 237-50, doi:10.16882/derim.2015.90060.
Vancouver Örs S, Ekinci M. Kuraklık stresi ve bitki fizyolojisi. DERİM. 2015;32(2):237-50.

Cited By












Effects of Drought on Pome Fruit Species
Journal of the Institute of Science and Technology
https://doi.org/10.21597/jist.1078983













DERİM in

 

CAB INTERNATIONAL                                                                                                   CABI International ile ilgili görsel sonucu

FAO AGRIS                                                                                                                                   FAO AGRIS ile ilgili görsel sonucu

INDEX COPERNICUS                                                                                                       INDEX COPERNICUS ile ilgili görsel sonucu

OpenAIRE                                                                                                                                      OpenAIRE ile ilgili görsel sonucu

GOOGLE SCHOLAR                                                                                                           GOOGLE SCHOLAR ile ilgili görsel sonucu


FSTA                                                                                       16423

DRJI                                                                                      16424

                                                    

ISSN : 1300-3496

e-ISSN : 2149-2182

Creative Commons Lisansı
Derim Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.

------------------------------------------------------------------

DERİM

Batı Akdeniz Tarımsal Araştırma Enstitüsü

Demircikara Mh. Paşa Kavakları Cad. No:11, P.K.35 Antalya

derim@derim.com.tr

www.derim.com.tr