Review
BibTex RIS Cite

Nörolojik Hastalıklarda Deneysel Hayvan Modelleri

Year 2024, Volume: 26 Issue: S1
https://doi.org/10.18678/dtfd.1481630

Abstract

İnsan beyni, milyarlarca nöronu ve trilyonlarca bağlantıyı kontrol eden bir yapıdır. Eşsiz bir anatomiye sahip olan bu yapının sayısız nöron ve bağlantıya sahip olması, onun anlaşılmasını daha da karmaşık hale getirmektedir. Hafıza, hareket, duyu ve duygular gibi özelleşmiş fonksiyonlar için farklı bölgelere ayrılmış olan beyin, insanın biliş ve davranışında büyük öneme sahiptir. Yüzyıllardır süren araştırmalar, teknolojinin de gelişmesiyle sinirbilimini ileriye taşımış, beynin nörolojik, davranışsal ve yapısal özelliklerinin anlaşılmasını sağlamıştır. Alzheimer, Parkinson, multiple skleroz, amyotrofik lateral skleroz, migren, epilepsi ve şizofreni gibi nörolojik bozukluklara yönelik tedavilerin geliştirilebilmesi ve hastalıkların karmaşık mekanizmalarının anlaşılması için yeni tedavi yöntemlerinin, ilaç ve ürünlerinin doğrudan insanlarla çalışılması etik sorunlar doğuracağından nörodejeneratif hastalıkların tedavisinde, deneysel hayvan modellerine ihtiyaç duyulmaktadır. Nörolojik bozuklukların fizyopatolojik özelliklerini aydınlatmak için hali hazırda geliştirilmiş birçok deneysel hayvan modeli mevcuttur. Bu derlemede, günümüzde geliştirilen nörodejeneratif hastalıklara yönelik deneysel modellerin bölümler halinde özetlenmesidir. Bir deneysel hayvan modelinin, insandaki hastalık sürecini tamamen karşılayamayacağını bilmekle birlikte en azından hastalığın anlaşılmasında yol gösterici olabilir.

References

  • Gowers WR. A manual of diseases of the nervous system. Philadelphia: P. Blakiston's Son & Co.; 1899.
  • Bansal PK, Deshmukh R. Animal models of neurological disorders: principle and working procedure for animal models of neurological disorders. Singapore: Springer; 2018.
  • Mucke L. Neuroscience: Alzheimer's disease. Nature. 2009;461(7266):895-7.
  • Piaceri I, Nacmias B, Sorbi S. Genetics of familial and sporadic Alzheimer's disease. Front Bosci (Elite Ed). 2013;5(1):167-77.
  • Rajmohan R, Reddy PH. Amyloid-Beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimers Dis. 2017;57(4):975-99.
  • Shree S, Bhardwaj R, Kashish, Deshmukh R. Non-transgenic animal models of Alzheimer’s disease. In: Bansal PK, Deshmukh R, editors. Animal models of neurological disorders: principle and working procedure for animal models of neurological disorders. Singapore: Springer Singapore; 2017. p.3-22.
  • Li X, Bao X, Wang R. Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review). Int J Mol Med. 2016;37(2):271-83.
  • Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, et al. APP mouse models for Alzheimer's disease preclinical studies. EMBO J. 2017;36(17):2473-87.
  • Sahara N, Lewis J. Amyloid precursor protein and tau transgenic models of Alzheimer's disease: insights from the past and directions for the future. Future Neurol. 2010;5(3):411-20.
  • Kamat PK. Streptozotocin induced Alzheimer's disease like changes and the underlying neural degeneration and regeneration mechanism. Neural Regen Res. 2015;10(7):1050-2.
  • Pal A, Rani I, Pawar A, Picozza M, Rongioletti M, Squitti R. Microglia and astrocytes in Alzheimer's disease in the context of the aberrant copper homeostasis hypothesis. Biomolecules. 2021;11(11):1598.
  • Kim HY, Lee DK, Chung BR, Kim HV, Kim Y. Intracerebroventricular injection of amyloid-β peptides in normal mice to acutely induce Alzheimer-like cognitive deficits. J Vis Exp. 2016;(109):53308.
  • Kumar A, Dogra S, Prakash A. Neuroprotective effects of Centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int J Alzheimers Dis. 2009;2009:972178.
  • Kumar A, Seghal N, Naidu PS, Padi SS, Goyal R. Colchicines-induced neurotoxicity as an animal model of sporadic dementia of Alzheimer's type. Pharmacol Rep. 2007;59(3):274-83.
  • Savory J, Herman MM, Ghribi O. Mechanisms of aluminum-induced neurodegeneration in animals: Implications for Alzheimer's disease. J Alzheimers Dis. 2006;10(2-3):135-44.
  • Walton JR. An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Biochem. 2007;101(9):1275-84.
  • Watt NT, Whitehouse IJ, Hooper NM. The role of zinc in Alzheimer's disease. Int J Alzheimers Dis. 2011;2011:971021.
  • Zhan X, Stamova B, Sharp FR. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer's disease brain: a review. Front Aging Neurosci. 2018;10:42.
  • Dickson DW. Neuropathology of Parkinson disease. Parkinsonism Relat Disord. 2018;46(Suppl 1):S30-S3.
  • Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003;39(6):889-909.
  • Sharma N, Jamwal S, Singh S, Gill HK, Bansal PK. Animal models of Parkinson’s disease. In: Bansal PK, Deshmukh R, editors. Animal models of neurological disorders: principle and working procedure for animal models of neurological disorders. Singapore: Springer Singapore; 2017. p.23-42.
  • Blandini F, Armentero MT, Martignoni E. The 6-hydroxydopamine model: News from the past. Parkinsonism Relat Disord. 2008;14(Suppl 2):S124-9.
  • Masilamoni GJ, Smith Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson’s disease. J Neural Transm (Vienna). 2018;125(3):337-63.
  • Smeyne RJ, Jackson-Lewis V. The MPTP model of Parkinson's disease. Brain Res Mol Brain Res. 2005;134(1):57-66.
  • Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S. Evaluation of models of Parkinson's disease. Front Neurosci. 2016;9:503.
  • Perier C, Bové J, Vila M, Przedborski S. The rotenone model of Parkinson's disease. Trends Neurosci. 2003;26(7):345-6.
  • Berry C, La Vecchia C, Nicotera P. Paraquat and Parkinson's disease. Cell Death Differ. 2010;17(7):1115-25.
  • Deng I, Corrigan F, Zhai G, Zhou XF, Bobrovskaya L. Lipopolysaccharide animal models of Parkinson’s disease: Recent progress and relevance to clinical disease. Brain Behav Immun Health. 2020;4:100060.
  • Kalinderi K, Bostantjopoulou S, Fidani L. The genetic background of Parkinson's disease: current progress and future prospects. Acta Neurol Scand. 2016;134(5):314-26.
  • Gupta S, Kour S, Deshmukh R. Animal models of multiple sclerosis (MS). In: Bansal PK, Deshmukh R, editors. Animal models of neurological disorders: principle and working procedure for animal models of neurological disorders. Singapore: Springer Singapore; 2017. p.263-76.
  • Procaccini C, De Rosa V, Pucino V, Formisano L, Matarese G. Animal models of Multiple sclerosis. Eur J Pharmacol. 2015;759:182-91.
  • Bjelobaba I, Begovic-Kupresanin V, Pekovic S, Lavrnja I. Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis. J Neurosci Res. 2018;96(6):1021-42.
  • Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int. 2015;6:171.
  • Aktekin MR, Uysal H. Epidemiology of amyotrophic lateral sclerosis. Turk J Neurol. 2020;26(3):187-96.
  • Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, et al. Nearly 30 years of animal models to study amyotrophic lateral sclerosis: a historical overview and future perspectives. Int J Mol Sci. 2021;22(22):12236.
  • den Hartog Jager WA. Experimental amyotrophic lateral sclerosis in the guinea-pig. J Neurol Sci. 1985;67(2):133-42.
  • Engelhardt JI, Appel SH, Killian JM. Motor neuron destruction in guinea pigs immunized with bovine spinal cord ventral horn homogenate: experimental autoimmune gray matter disease. J Neuroimmunol. 1990;27(1):21-31.
  • Engelhardt JI, Appel SH, Killian JM. Experimental autoimmune motoneuron disease. Ann Neurol. 1989;26(3):368-76.
  • de Munck E, Muñoz-Sáez E, Miguel BG, Solas MT, Ojeda I, Martínez A, et al. β-N-methylamino-l-alanine causes neurological and pathological phenotypes mimicking amyotrophic lateral sclerosis (ALS): The first step towards an experimental model for sporadic ALS. Environ Toxicol Pharmacol. 2013;36(2):243-55.
  • de Munck E, Muñoz-Sáez E, Miguel BG, Solas MT, Martínez A, Arahuetes RM. Morphometric and neurochemical alterations found in l-BMAA treated rats. Environ Toxicol Pharmacol. 2015;39(3):1232-45.
  • Wilson JM, Petrik MS, Moghadasian MH, Shaw CA. Examining the interaction of apo E and neurotoxicity on a murine model of ALS-PDC. Can J Physiol Pharmacol. 2005;83(2):131-41.
  • Tabata RC, Wilson JM, Ly P, Zwiegers P, Kwok D, Van Kampen JM, et al. Chronic exposure to dietary sterol glucosides is neurotoxic to motor neurons and induces an ALS-PDC phenotype. Neuromolecular Med. 2008;10(1):24-39.
  • Smitt PAES, de Jong JM. Animal models of amyotrophic lateral sclerosis and the spinal muscular atrophies. J Neurol Sci. 1989;91(3):231-58.
  • Harriott AM, Strother LC, Vila-Pueyo M, Holland PR. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J Headache Pain. 2019;20(1):91.
  • Noseda R, Burstein R. Migraine pathophysiology: Anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain. 2013;154(Supll 1):S44-53.
  • Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol. 2013;75:365-91.
  • Lipton RB, Bigal ME, Steiner TJ, Silberstein SD, Olesen J. Classification of primary headaches. Neurology. 2004;63(3):427-35.
  • Eikermann-Haerter K, Moskowitz MA. Animal models of migraine headache and aura. Curr Opin Neurol. 2008;21(3):294-300.
  • Andreou AP, Summ O, Charbit AR, Romero-Reyes M, Goadsby PJ. Animal models of headache: from bedside to bench and back to bedside. Expert Rev Neurother. 2010;10(3):389-411.
  • Lukács M, Haanes KA, Majláth Z, Tajti J, Vécsei L, Warfvinge K, et al. Dural administration of inflammatory soup or Complete Freund’s Adjuvant induces activation and inflammatory response in the rat trigeminal ganglion. J Headache Pain. 2015;16:564.
  • Sufka KJ, Staszko SM, Johnson AP, Davis ME, Davis RE, Smitherman TA. Clinically relevant behavioral endpoints in a recurrent nitroglycerin migraine model in rats. J Headache Pain. 2016;17:40.
  • Barrett CF, van den Maagdenberg AMJM, Frants RR, Ferrari MD. Familial hemiplegic migraine. Adv Genet. 2008;63:57-83.
  • Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci. 1993;13(3):1167-77.
  • Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ, Charles A. Characterization of a novel model of chronic migraine. Pain. 2014;155(2):269-74.
  • Cano A, Fonseca E, Ettcheto M, Sánchez-López E, de Rojas I, Alonso-Lana S, et al. Epilepsy in neurodegenerative diseases: related drugs and molecular pathways. Pharmaceuticals (Basel). 2021;14(10):1057.
  • Poduri A, Lowenstein D. Epilepsy genetics--past, present, and future. Curr Opin Genet Dev. 2011;21(3):325-32.
  • Olney JW. Excitatory transmitters and epilepsy-related brain damage. Int Rev Neurobiol. 1985:27:337-62.
  • Taubøll E, Sveberg L, Svalheim S. Interactions between hormones and epilepsy. Seizure. 2015;28:3-11.
  • Vezzani A, Fujinami RS, White HS, Preux PM, Blümcke I, Sander JW, et al. Infections, inflammation and epilepsy. Acta Neuropathol. 2016;131(2):211-34.
  • Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest. 2005;115(8):2010-7.
  • Sarlo GL, Holton KF. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure. 2021;91:213-27.
  • Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia. 2010;51(4):676-85.
  • Fisher RS. The New Classification of Seizures by the International League Against Epilepsy 2017. Curr Neurol Neurosci Rep. 2017;17(6):48.
  • Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359-68.
  • Ighodaro ET, Maini K, Arya K, Sharma S. Focal Onset Seizure. [Updated 2023 Sep 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Prabhu S, Chabardès S, Sherdil A, Devergnas A, Michallat S, Bhattacharjee M, et al. Effect of subthalamic nucleus stimulation on penicillin induced focal motor seizures in primate. Brain Stimul. 2015;8(2):177-84.
  • Curia G, Longo D, Biagini G, Jones RSG, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 2008;172(2):143-57.
  • Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2887-99.
  • Sutter R, Rüegg S, Tschudin-Sutter S. Seizures as adverse events of antibiotic drugs. Neurology. 2015;85(15):1332-41.
  • Raol YH, Brooks-Kayal AR. Experimental models of seizures and epilepsies. Prog Mol Biol Transl Sci. 2012;105:57-82.
  • Gholami M, Saboory E, Zare S, Roshan-Milani S, Hajizadeh-Moghaddam A. The effect of dorsal hippocampal administration of nicotinic and muscarinic cholinergic ligands on pentylenetetrazol-induced generalized seizures in rats. Epilepsy Behav. 2012;25(2):244-9.
  • JelenkoviĆ A, JovanoviĆ M, NinkoviĆ M, MaksimoviĆ M, BokonjiĆ D, BoŠKoviĆ B. Nitric oxide (NO) and convulsions induced by pentylenetetrazol. Ann N Y Acad Sci. 2002;962:296-305.
  • Becker A, Grecksch G, Thiemann W, Höllt V. Pentylenetetrazol-kindling modulates stimulated dopamine release in the nucleus accumbens of rats. Pharmacol Biochem Behav. 2000;66(2):425-8.
  • Isaeva E, Isaev D, Khazipov R, Holmes GL. Selective impairment of GABAergic synaptic transmission in the flurothyl model of neonatal seizures. Eur J Neurosci. 2006;23(6):1559-66.
  • Hany M, Rehman B, Azhar Y, Chapman J. Schizophrenia. [Updated 2023 Mar 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, et al. An overview of animal models related to schizophrenia. Can J Psychiatry. 2019;64(1):5-17.
  • McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-An Overview. JAMA Psychiatry. 2020;77(2):201-10.
  • Ratajczak P, Kus K, Murawiecka P, Słodzińska I, Giermaziak W, Nowakowska E. Biochemical and cognitive impairments observed in animal models of schizophrenia induced by prenatal stress paradigm or methylazoxymethanol acetate administration. Acta Neurobiol Exp (Wars). 2015;75(3):314-25.
  • Carter CJ. Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii. Schizophr Bull. 2008;35(6):1163-82.
  • Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun. 2008;22(4):469-86.
  • Engel JA, Zhang J, Bergström T, Conradi N, Forkstam C, Liljeroth A, et al. Neonatal herpes simplex virus type 1 brain infection affects the development of sensorimotor gating in rats. Brain Res. 2000;863(1):233-40.
  • Rothschild DM, O'Grady M, Wecker L. Neonatal cytomegalovirus exposure decreases prepulse inhibition in adult rats: Implications for schizophrenia. J Neurosci Res. 1999;57(4):429-34.
  • Gaskin PL, Alexander SP, Fone KC. Neonatal phencyclidine administration and post-weaning social isolation as a dual-hit model of ‘schizophrenia-like’ behaviour in the rat. Psychopharmacology (Berl). 2014;231(12):2533-45.
  • Białoń M, Wąsik A. Advantages and limitations of animal schizophrenia models. Int J Mol Sci. 2022;23(11):5968.
  • Featherstone RE, Rizos Z, Kapur S, Fletcher PJ. A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav Brain Res. 2008;189(1):170-9.
  • Rezvani AH, Eddins D, Slade S, Hampton DS, Christopher NC, Petro A, et al. Neonatal 6-hydroxydopamine lesions of the frontal cortex in rats: Persisting effects on locomotor activity, learning and nicotine self-administration. Neuroscience. 2008;154(3):885-97.
  • Canal CE, Morgan D. Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal. 2012;4(7-8):556-76.
  • Kalinichev M, Robbins MJ, Hartfield EM, Maycox PR, Moore SH, Savage KM, et al. Comparison between intraperitoneal and subcutaneous phencyclidine administration in Sprague-Dawley rats: a locomotor activity and gene induction study. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(2):414-22.
  • Jeevakumar V, Driskill C, Paine A, Sobhanian M, Vakil H, Morris B, et al. Ketamine administration during the second postnatal week induces enduring schizophrenia-like behavioral symptoms and reduces parvalbumin expression in the medial prefrontal cortex of adult mice. Behav Brain Res. 2015;282:165-75.
  • Shahzad S, Ahmad S, Madiha S, Khaliq S, Liaquat L, Sadir S, et al. Dizocilpine induced psychosis-like behavior in rats: A possible animal model with full spectrum of schizophrenia. Pak J Pharm Sci. 2017;30(Suppl 6):2423-7.
  • Pletnikov MV, Ayhan Y, Xu Y, Nikolskaia O, Ovanesov M, Huang H, et al. Enlargement of the lateral ventricles in mutant DISC1 transgenic mice. Mol Psychiatry. 2008;13(2):115.
  • Shen S, Lang B, Nakamoto C, Zhang F, Pu J, Kuan SL, et al. Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci. 2008;28(43):10893-904.
  • Karl T, Duffy L, Scimone A, Harvey RP, Schofield PR. Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia. Genes Brain Behav. 2007;6(7):677-87.
  • Chesworth R, Downey L, Logge W, Killcross S, Karl T. Cognition in female transmembrane domain neuregulin 1 mutant mice. Behav Brain Res. 2012;226(1):218-23.
  • Janetsian-Fritz SS, Timme NM, Timm MM, McCane AM, Baucum Ii AJ, O’Donnell BF, et al. Maternal deprivation induces alterations in cognitive and cortical function in adulthood. Transl Psychiatry. 2018;8(1):71.
  • Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A. 1998;95(17):9991-6.
  • Bassett AS, Chow EW. Schizophrenia and 22q11.2 deletion syndrome. Curr Psychiatry Rep. 2008;10(2):148-57.
  • Saito R, Koebis M, Nagai T, Shimizu K, Liao J, Wulaer B, et al. Comprehensive analysis of a novel mouse model of the 22q11.2 deletion syndrome. Transl Psychiatry. 2020;10(1):35.
  • Sun Z, Williams DJ, Xu B, Gogos JA. Altered function and maturation of primary cortical neurons from a 22q11.2 deletion mouse model of schizophrenia. Transl Psychiatry. 2018;8(1):85.

Experimental Animal Models in Neurological Diseases

Year 2024, Volume: 26 Issue: S1
https://doi.org/10.18678/dtfd.1481630

Abstract

The human brain is a structure that controls billions of neurons and trillions of connections. Having a unique anatomy with countless neurons and connections makes its understanding even more complex. The brain, divided into different regions for specialized functions such as memory, movement, sensation, and emotions, holds great significance in human cognition and behavior. Centuries of research, coupled with advancements in technology, have propelled neuroscience forward, facilitating the understanding of the neurological, behavioral, and structural characteristics of the brain. Developing treatments for neurological disorders such as Alzheimer's, Parkinson's, multiple sclerosis, amyotrophic lateral sclerosis, migraine, epilepsy, and schizophrenia as well as understanding the complex mechanisms of these diseases, require the exploration of new treatment methods, drugs, and products through direct experimentation on humans, which raises ethical concerns. Therefore, experimental animal models are needed in the treatment of neurodegenerative diseases. There are currently many experimental animal models developed to elucidate the pathophysiological characteristics of neurological disorders. The aim of this review was to summarize the experimental models of neurodegenerative diseases developed today in sections. While recognizing that an experimental animal model may not fully replicate the disease process in humans, it can at least provide guidance in understanding the disease.

References

  • Gowers WR. A manual of diseases of the nervous system. Philadelphia: P. Blakiston's Son & Co.; 1899.
  • Bansal PK, Deshmukh R. Animal models of neurological disorders: principle and working procedure for animal models of neurological disorders. Singapore: Springer; 2018.
  • Mucke L. Neuroscience: Alzheimer's disease. Nature. 2009;461(7266):895-7.
  • Piaceri I, Nacmias B, Sorbi S. Genetics of familial and sporadic Alzheimer's disease. Front Bosci (Elite Ed). 2013;5(1):167-77.
  • Rajmohan R, Reddy PH. Amyloid-Beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimers Dis. 2017;57(4):975-99.
  • Shree S, Bhardwaj R, Kashish, Deshmukh R. Non-transgenic animal models of Alzheimer’s disease. In: Bansal PK, Deshmukh R, editors. Animal models of neurological disorders: principle and working procedure for animal models of neurological disorders. Singapore: Springer Singapore; 2017. p.3-22.
  • Li X, Bao X, Wang R. Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review). Int J Mol Med. 2016;37(2):271-83.
  • Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, et al. APP mouse models for Alzheimer's disease preclinical studies. EMBO J. 2017;36(17):2473-87.
  • Sahara N, Lewis J. Amyloid precursor protein and tau transgenic models of Alzheimer's disease: insights from the past and directions for the future. Future Neurol. 2010;5(3):411-20.
  • Kamat PK. Streptozotocin induced Alzheimer's disease like changes and the underlying neural degeneration and regeneration mechanism. Neural Regen Res. 2015;10(7):1050-2.
  • Pal A, Rani I, Pawar A, Picozza M, Rongioletti M, Squitti R. Microglia and astrocytes in Alzheimer's disease in the context of the aberrant copper homeostasis hypothesis. Biomolecules. 2021;11(11):1598.
  • Kim HY, Lee DK, Chung BR, Kim HV, Kim Y. Intracerebroventricular injection of amyloid-β peptides in normal mice to acutely induce Alzheimer-like cognitive deficits. J Vis Exp. 2016;(109):53308.
  • Kumar A, Dogra S, Prakash A. Neuroprotective effects of Centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int J Alzheimers Dis. 2009;2009:972178.
  • Kumar A, Seghal N, Naidu PS, Padi SS, Goyal R. Colchicines-induced neurotoxicity as an animal model of sporadic dementia of Alzheimer's type. Pharmacol Rep. 2007;59(3):274-83.
  • Savory J, Herman MM, Ghribi O. Mechanisms of aluminum-induced neurodegeneration in animals: Implications for Alzheimer's disease. J Alzheimers Dis. 2006;10(2-3):135-44.
  • Walton JR. An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Biochem. 2007;101(9):1275-84.
  • Watt NT, Whitehouse IJ, Hooper NM. The role of zinc in Alzheimer's disease. Int J Alzheimers Dis. 2011;2011:971021.
  • Zhan X, Stamova B, Sharp FR. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer's disease brain: a review. Front Aging Neurosci. 2018;10:42.
  • Dickson DW. Neuropathology of Parkinson disease. Parkinsonism Relat Disord. 2018;46(Suppl 1):S30-S3.
  • Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003;39(6):889-909.
  • Sharma N, Jamwal S, Singh S, Gill HK, Bansal PK. Animal models of Parkinson’s disease. In: Bansal PK, Deshmukh R, editors. Animal models of neurological disorders: principle and working procedure for animal models of neurological disorders. Singapore: Springer Singapore; 2017. p.23-42.
  • Blandini F, Armentero MT, Martignoni E. The 6-hydroxydopamine model: News from the past. Parkinsonism Relat Disord. 2008;14(Suppl 2):S124-9.
  • Masilamoni GJ, Smith Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson’s disease. J Neural Transm (Vienna). 2018;125(3):337-63.
  • Smeyne RJ, Jackson-Lewis V. The MPTP model of Parkinson's disease. Brain Res Mol Brain Res. 2005;134(1):57-66.
  • Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S. Evaluation of models of Parkinson's disease. Front Neurosci. 2016;9:503.
  • Perier C, Bové J, Vila M, Przedborski S. The rotenone model of Parkinson's disease. Trends Neurosci. 2003;26(7):345-6.
  • Berry C, La Vecchia C, Nicotera P. Paraquat and Parkinson's disease. Cell Death Differ. 2010;17(7):1115-25.
  • Deng I, Corrigan F, Zhai G, Zhou XF, Bobrovskaya L. Lipopolysaccharide animal models of Parkinson’s disease: Recent progress and relevance to clinical disease. Brain Behav Immun Health. 2020;4:100060.
  • Kalinderi K, Bostantjopoulou S, Fidani L. The genetic background of Parkinson's disease: current progress and future prospects. Acta Neurol Scand. 2016;134(5):314-26.
  • Gupta S, Kour S, Deshmukh R. Animal models of multiple sclerosis (MS). In: Bansal PK, Deshmukh R, editors. Animal models of neurological disorders: principle and working procedure for animal models of neurological disorders. Singapore: Springer Singapore; 2017. p.263-76.
  • Procaccini C, De Rosa V, Pucino V, Formisano L, Matarese G. Animal models of Multiple sclerosis. Eur J Pharmacol. 2015;759:182-91.
  • Bjelobaba I, Begovic-Kupresanin V, Pekovic S, Lavrnja I. Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis. J Neurosci Res. 2018;96(6):1021-42.
  • Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int. 2015;6:171.
  • Aktekin MR, Uysal H. Epidemiology of amyotrophic lateral sclerosis. Turk J Neurol. 2020;26(3):187-96.
  • Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, et al. Nearly 30 years of animal models to study amyotrophic lateral sclerosis: a historical overview and future perspectives. Int J Mol Sci. 2021;22(22):12236.
  • den Hartog Jager WA. Experimental amyotrophic lateral sclerosis in the guinea-pig. J Neurol Sci. 1985;67(2):133-42.
  • Engelhardt JI, Appel SH, Killian JM. Motor neuron destruction in guinea pigs immunized with bovine spinal cord ventral horn homogenate: experimental autoimmune gray matter disease. J Neuroimmunol. 1990;27(1):21-31.
  • Engelhardt JI, Appel SH, Killian JM. Experimental autoimmune motoneuron disease. Ann Neurol. 1989;26(3):368-76.
  • de Munck E, Muñoz-Sáez E, Miguel BG, Solas MT, Ojeda I, Martínez A, et al. β-N-methylamino-l-alanine causes neurological and pathological phenotypes mimicking amyotrophic lateral sclerosis (ALS): The first step towards an experimental model for sporadic ALS. Environ Toxicol Pharmacol. 2013;36(2):243-55.
  • de Munck E, Muñoz-Sáez E, Miguel BG, Solas MT, Martínez A, Arahuetes RM. Morphometric and neurochemical alterations found in l-BMAA treated rats. Environ Toxicol Pharmacol. 2015;39(3):1232-45.
  • Wilson JM, Petrik MS, Moghadasian MH, Shaw CA. Examining the interaction of apo E and neurotoxicity on a murine model of ALS-PDC. Can J Physiol Pharmacol. 2005;83(2):131-41.
  • Tabata RC, Wilson JM, Ly P, Zwiegers P, Kwok D, Van Kampen JM, et al. Chronic exposure to dietary sterol glucosides is neurotoxic to motor neurons and induces an ALS-PDC phenotype. Neuromolecular Med. 2008;10(1):24-39.
  • Smitt PAES, de Jong JM. Animal models of amyotrophic lateral sclerosis and the spinal muscular atrophies. J Neurol Sci. 1989;91(3):231-58.
  • Harriott AM, Strother LC, Vila-Pueyo M, Holland PR. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J Headache Pain. 2019;20(1):91.
  • Noseda R, Burstein R. Migraine pathophysiology: Anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain. 2013;154(Supll 1):S44-53.
  • Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol. 2013;75:365-91.
  • Lipton RB, Bigal ME, Steiner TJ, Silberstein SD, Olesen J. Classification of primary headaches. Neurology. 2004;63(3):427-35.
  • Eikermann-Haerter K, Moskowitz MA. Animal models of migraine headache and aura. Curr Opin Neurol. 2008;21(3):294-300.
  • Andreou AP, Summ O, Charbit AR, Romero-Reyes M, Goadsby PJ. Animal models of headache: from bedside to bench and back to bedside. Expert Rev Neurother. 2010;10(3):389-411.
  • Lukács M, Haanes KA, Majláth Z, Tajti J, Vécsei L, Warfvinge K, et al. Dural administration of inflammatory soup or Complete Freund’s Adjuvant induces activation and inflammatory response in the rat trigeminal ganglion. J Headache Pain. 2015;16:564.
  • Sufka KJ, Staszko SM, Johnson AP, Davis ME, Davis RE, Smitherman TA. Clinically relevant behavioral endpoints in a recurrent nitroglycerin migraine model in rats. J Headache Pain. 2016;17:40.
  • Barrett CF, van den Maagdenberg AMJM, Frants RR, Ferrari MD. Familial hemiplegic migraine. Adv Genet. 2008;63:57-83.
  • Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci. 1993;13(3):1167-77.
  • Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ, Charles A. Characterization of a novel model of chronic migraine. Pain. 2014;155(2):269-74.
  • Cano A, Fonseca E, Ettcheto M, Sánchez-López E, de Rojas I, Alonso-Lana S, et al. Epilepsy in neurodegenerative diseases: related drugs and molecular pathways. Pharmaceuticals (Basel). 2021;14(10):1057.
  • Poduri A, Lowenstein D. Epilepsy genetics--past, present, and future. Curr Opin Genet Dev. 2011;21(3):325-32.
  • Olney JW. Excitatory transmitters and epilepsy-related brain damage. Int Rev Neurobiol. 1985:27:337-62.
  • Taubøll E, Sveberg L, Svalheim S. Interactions between hormones and epilepsy. Seizure. 2015;28:3-11.
  • Vezzani A, Fujinami RS, White HS, Preux PM, Blümcke I, Sander JW, et al. Infections, inflammation and epilepsy. Acta Neuropathol. 2016;131(2):211-34.
  • Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest. 2005;115(8):2010-7.
  • Sarlo GL, Holton KF. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure. 2021;91:213-27.
  • Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia. 2010;51(4):676-85.
  • Fisher RS. The New Classification of Seizures by the International League Against Epilepsy 2017. Curr Neurol Neurosci Rep. 2017;17(6):48.
  • Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359-68.
  • Ighodaro ET, Maini K, Arya K, Sharma S. Focal Onset Seizure. [Updated 2023 Sep 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Prabhu S, Chabardès S, Sherdil A, Devergnas A, Michallat S, Bhattacharjee M, et al. Effect of subthalamic nucleus stimulation on penicillin induced focal motor seizures in primate. Brain Stimul. 2015;8(2):177-84.
  • Curia G, Longo D, Biagini G, Jones RSG, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 2008;172(2):143-57.
  • Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2887-99.
  • Sutter R, Rüegg S, Tschudin-Sutter S. Seizures as adverse events of antibiotic drugs. Neurology. 2015;85(15):1332-41.
  • Raol YH, Brooks-Kayal AR. Experimental models of seizures and epilepsies. Prog Mol Biol Transl Sci. 2012;105:57-82.
  • Gholami M, Saboory E, Zare S, Roshan-Milani S, Hajizadeh-Moghaddam A. The effect of dorsal hippocampal administration of nicotinic and muscarinic cholinergic ligands on pentylenetetrazol-induced generalized seizures in rats. Epilepsy Behav. 2012;25(2):244-9.
  • JelenkoviĆ A, JovanoviĆ M, NinkoviĆ M, MaksimoviĆ M, BokonjiĆ D, BoŠKoviĆ B. Nitric oxide (NO) and convulsions induced by pentylenetetrazol. Ann N Y Acad Sci. 2002;962:296-305.
  • Becker A, Grecksch G, Thiemann W, Höllt V. Pentylenetetrazol-kindling modulates stimulated dopamine release in the nucleus accumbens of rats. Pharmacol Biochem Behav. 2000;66(2):425-8.
  • Isaeva E, Isaev D, Khazipov R, Holmes GL. Selective impairment of GABAergic synaptic transmission in the flurothyl model of neonatal seizures. Eur J Neurosci. 2006;23(6):1559-66.
  • Hany M, Rehman B, Azhar Y, Chapman J. Schizophrenia. [Updated 2023 Mar 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, et al. An overview of animal models related to schizophrenia. Can J Psychiatry. 2019;64(1):5-17.
  • McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-An Overview. JAMA Psychiatry. 2020;77(2):201-10.
  • Ratajczak P, Kus K, Murawiecka P, Słodzińska I, Giermaziak W, Nowakowska E. Biochemical and cognitive impairments observed in animal models of schizophrenia induced by prenatal stress paradigm or methylazoxymethanol acetate administration. Acta Neurobiol Exp (Wars). 2015;75(3):314-25.
  • Carter CJ. Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii. Schizophr Bull. 2008;35(6):1163-82.
  • Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun. 2008;22(4):469-86.
  • Engel JA, Zhang J, Bergström T, Conradi N, Forkstam C, Liljeroth A, et al. Neonatal herpes simplex virus type 1 brain infection affects the development of sensorimotor gating in rats. Brain Res. 2000;863(1):233-40.
  • Rothschild DM, O'Grady M, Wecker L. Neonatal cytomegalovirus exposure decreases prepulse inhibition in adult rats: Implications for schizophrenia. J Neurosci Res. 1999;57(4):429-34.
  • Gaskin PL, Alexander SP, Fone KC. Neonatal phencyclidine administration and post-weaning social isolation as a dual-hit model of ‘schizophrenia-like’ behaviour in the rat. Psychopharmacology (Berl). 2014;231(12):2533-45.
  • Białoń M, Wąsik A. Advantages and limitations of animal schizophrenia models. Int J Mol Sci. 2022;23(11):5968.
  • Featherstone RE, Rizos Z, Kapur S, Fletcher PJ. A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav Brain Res. 2008;189(1):170-9.
  • Rezvani AH, Eddins D, Slade S, Hampton DS, Christopher NC, Petro A, et al. Neonatal 6-hydroxydopamine lesions of the frontal cortex in rats: Persisting effects on locomotor activity, learning and nicotine self-administration. Neuroscience. 2008;154(3):885-97.
  • Canal CE, Morgan D. Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal. 2012;4(7-8):556-76.
  • Kalinichev M, Robbins MJ, Hartfield EM, Maycox PR, Moore SH, Savage KM, et al. Comparison between intraperitoneal and subcutaneous phencyclidine administration in Sprague-Dawley rats: a locomotor activity and gene induction study. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(2):414-22.
  • Jeevakumar V, Driskill C, Paine A, Sobhanian M, Vakil H, Morris B, et al. Ketamine administration during the second postnatal week induces enduring schizophrenia-like behavioral symptoms and reduces parvalbumin expression in the medial prefrontal cortex of adult mice. Behav Brain Res. 2015;282:165-75.
  • Shahzad S, Ahmad S, Madiha S, Khaliq S, Liaquat L, Sadir S, et al. Dizocilpine induced psychosis-like behavior in rats: A possible animal model with full spectrum of schizophrenia. Pak J Pharm Sci. 2017;30(Suppl 6):2423-7.
  • Pletnikov MV, Ayhan Y, Xu Y, Nikolskaia O, Ovanesov M, Huang H, et al. Enlargement of the lateral ventricles in mutant DISC1 transgenic mice. Mol Psychiatry. 2008;13(2):115.
  • Shen S, Lang B, Nakamoto C, Zhang F, Pu J, Kuan SL, et al. Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci. 2008;28(43):10893-904.
  • Karl T, Duffy L, Scimone A, Harvey RP, Schofield PR. Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia. Genes Brain Behav. 2007;6(7):677-87.
  • Chesworth R, Downey L, Logge W, Killcross S, Karl T. Cognition in female transmembrane domain neuregulin 1 mutant mice. Behav Brain Res. 2012;226(1):218-23.
  • Janetsian-Fritz SS, Timme NM, Timm MM, McCane AM, Baucum Ii AJ, O’Donnell BF, et al. Maternal deprivation induces alterations in cognitive and cortical function in adulthood. Transl Psychiatry. 2018;8(1):71.
  • Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A. 1998;95(17):9991-6.
  • Bassett AS, Chow EW. Schizophrenia and 22q11.2 deletion syndrome. Curr Psychiatry Rep. 2008;10(2):148-57.
  • Saito R, Koebis M, Nagai T, Shimizu K, Liao J, Wulaer B, et al. Comprehensive analysis of a novel mouse model of the 22q11.2 deletion syndrome. Transl Psychiatry. 2020;10(1):35.
  • Sun Z, Williams DJ, Xu B, Gogos JA. Altered function and maturation of primary cortical neurons from a 22q11.2 deletion mouse model of schizophrenia. Transl Psychiatry. 2018;8(1):85.
There are 99 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other), Neurology and Neuromuscular Diseases
Journal Section Invited Review
Authors

Neslihan Şirin 0000-0002-3470-0043

Şerif Demir 0000-0002-2548-1969

Early Pub Date May 10, 2024
Publication Date
Submission Date February 28, 2024
Acceptance Date April 3, 2024
Published in Issue Year 2024 Volume: 26 Issue: S1

Cite

APA Şirin, N., & Demir, Ş. (2024). Experimental Animal Models in Neurological Diseases. Duzce Medical Journal, 26(S1). https://doi.org/10.18678/dtfd.1481630
AMA Şirin N, Demir Ş. Experimental Animal Models in Neurological Diseases. Duzce Med J. May 2024;26(S1). doi:10.18678/dtfd.1481630
Chicago Şirin, Neslihan, and Şerif Demir. “Experimental Animal Models in Neurological Diseases”. Duzce Medical Journal 26, no. S1 (May 2024). https://doi.org/10.18678/dtfd.1481630.
EndNote Şirin N, Demir Ş (May 1, 2024) Experimental Animal Models in Neurological Diseases. Duzce Medical Journal 26 S1
IEEE N. Şirin and Ş. Demir, “Experimental Animal Models in Neurological Diseases”, Duzce Med J, vol. 26, no. S1, 2024, doi: 10.18678/dtfd.1481630.
ISNAD Şirin, Neslihan - Demir, Şerif. “Experimental Animal Models in Neurological Diseases”. Duzce Medical Journal 26/S1 (May 2024). https://doi.org/10.18678/dtfd.1481630.
JAMA Şirin N, Demir Ş. Experimental Animal Models in Neurological Diseases. Duzce Med J. 2024;26. doi:10.18678/dtfd.1481630.
MLA Şirin, Neslihan and Şerif Demir. “Experimental Animal Models in Neurological Diseases”. Duzce Medical Journal, vol. 26, no. S1, 2024, doi:10.18678/dtfd.1481630.
Vancouver Şirin N, Demir Ş. Experimental Animal Models in Neurological Diseases. Duzce Med J. 2024;26(S1).