Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 4, 166 - 170, 20.12.2020
https://doi.org/10.26701/ems.769837

Abstract

References

  • Weibel, D., Whitesides, G. (2006). Applications of microfluidics in chemical biology. Current Opinion in Chemical Biology, 10(6): 584–91. doi: 10.1016/j.cbpa.2006.10.016.
  • Whitesides, G.M. (2006). The origins and the future of microfluidics. Nature, 442(7101): 368–73. doi: 10.1038/nature05058.
  • Rivet, C., Lee, H., Hirsch, A., Hamilton, S., Lu, H. (2011). Microfluidics for medical diagnostics and biosensors. Chemical Engineering Science, 66(7): 1490–507. doi: 10.1016/j.ces.2010.08.015.
  • Tosun, E., Ozgur, T., Ozgur, C., Ozcanli, M., Serin, H., Aydin, K. (2017). Comparative analysis of various modelling techniques for emission prediction of diesel engine fueled by diesel fuel with nanoparticle additives. European Mechanical Science, 1(1): 15–23. doi: 10.26701/ems.320490.
  • Kaleli, A.R. (2019). Gray based Fuzzy Gain-Scheduling PID Controller Design for Air-Fuel System Under Variable Engine Operating Conditions. European Mechanical Science, 3(4): 125–32. doi: 10.26701/ems.599452.
  • Lu, M., Ozcelik, A., Grigsby, C.L.C.L. Zhao, Y., Guo, F., Leong, K.W.K.W., et al., (2016). Microfluidic hydrodynamic focusing for synthesis of nanomaterials. Nano Today, 11(6): 778–92. doi: 10.1016/j.nantod.2016.10.006.
  • Li, Z., Mak, S.Y., Sauret, A., Shum, H.C. (2014). Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy. Lab on a Chip, 14(4): 744. doi: 10.1039/c3lc51176f.
  • Wijnen, B., Hunt, E.J., Anzalone, G.C., Pearce, J.M. (2014). Open-Source Syringe Pump Library. PLoS ONE, 9(9): e107216. doi: 10.1371/journal.pone.0107216.
  • Pearce, J.M. (2014). Cut costs with open-source hardware. Nature, 505(7485): 618–618. doi: 10.1038/505618d.
  • Pearce, J.M. (2012). Building Research Equipment with Free, Open-Source Hardware. Science, 337(6100): 1303–4. doi: 10.1126/science.1228183.
  • Juarez, A., Maynard, K., Skerrett, E., Molyneux, E., Richards-Kortum, R., Dube, Q., et al. (2016). AutoSyP: A Low-Cost, Low-Power Syringe Pump for Use in Low-Resource Settings. The American Journal of Tropical Medicine and Hygiene, 95(4): 964–9. doi: 10.4269/ajtmh.16-0285.
  • Skerrett, E., Kommwa, E., Maynard, K., Juarez, A., Mataya, R., Richards-Kortum, R., et al. (2017). Evaluation of a low-cost, low-power syringe pump to deliver magnesium sulfate intravenously to pre-eclamptic women in a Malawian referral hospital. BMC Pregnancy and Childbirth, 17(1): 191. doi: 10.1186/s12884-017-1382-9.
  • Zhang, P., Bachman, H., Ozcelik, A., Huang, T.J. (2020). Acoustic Microfluidics. Annual Review of Analytical Chemistry, 13(1): 17–43. doi: 10.1146/annurev-anchem-090919-102205.
  • Wu, M., Ozcelik, A., Rufo, J., Wang, Z., Fang, R., Jun Huang, T. (2019). Acoustofluidic separation of cells and particles. Microsystems & Nanoengineering, 5(1): 32. doi: 10.1038/s41378-019-0064-3.
  • Lake, J.R., Heyde, K.C., Ruder, W.C. (2017). Low-cost feedback-controlled syringe pressure pumps for microfluidics applications. PLOS ONE, 12(4): e0175089. doi: 10.1371/journal.pone.0175089.
  • Guelig, D., Bauer, J., Wollen, A., Schiller, C., Sherman-Konkle, J., Roche, A., et al. (2017). Design of a Novel, Adjustable Flow Rate, Reusable, Electricity-Free, Low-Cost Syringe Infusion Pump. Journal of Medical Devices, 11(4): 1–6. doi: 10.1115/1.4037935.
  • Amarante, L.M., Newport, J., Mitchell, M., Wilson, J., Laubach, M. (2019). An Open Source Syringe Pump Controller for Fluid Delivery of Multiple Volumes. Eneuro, 6(5): ENEURO.0240-19.2019. doi: 10.1523/ENEURO.0240-19.2019.
  • Booeshaghi, A.S., Beltrame, E. da V., Bannon, D., Gehring, J., Pachter, L. (2019). Principles of open source bioinstrumentation applied to the poseidon syringe pump system. Scientific Reports, 9(1): 12385. doi: 10.1038/s41598-019-48815-9.
  • Pusch, K., Hinton, T.J., Feinberg, A.W. (2018). Large volume syringe pump extruder for desktop 3D printers. HardwareX, 3(November 2017): 49–61. doi: 10.1016/j.ohx.2018.02.001.
  • Cubberley, M.S., Hess, W.A. (2017). An Inexpensive Programmable Dual-Syringe Pump for the Chemistry Laboratory. Journal of Chemical Education, 94(1): 72–4. doi: 10.1021/acs.jchemed.6b00598.
  • Garcia, V.E., Liu, J., DeRisi, J.L. (2018). Low-cost touchscreen driven programmable dual syringe pump for life science applications. HardwareX, 4: e00027. doi: 10.1016/j.ohx.2018.e00027.

A Simple Approach for Controlling an Open-Source Syringe Pump

Year 2020, Volume: 4 Issue: 4, 166 - 170, 20.12.2020
https://doi.org/10.26701/ems.769837

Abstract

Precise control of fluid flows in microfluidic applications is crucial for various applications in lab-on-a-chip and point-of-care diagnostics. Standard bench-top equipment for providing this capability are syringe pumps. However, high cost of these systems limit their availability in low resourced laboratories. There are various open-sourced alternative syringe pump systems that can be fabricated and assembled using 3D printing, but they lack versatile control and flow rate characterization that are required for microfluidic applications. We report a simple and cost-effective approach to control an open-source multi-channel syringe pump. Simultaneous and adjustable flow control, and detailed characterization of the volume flow rates for different syringe volumes are also demonstrated.

References

  • Weibel, D., Whitesides, G. (2006). Applications of microfluidics in chemical biology. Current Opinion in Chemical Biology, 10(6): 584–91. doi: 10.1016/j.cbpa.2006.10.016.
  • Whitesides, G.M. (2006). The origins and the future of microfluidics. Nature, 442(7101): 368–73. doi: 10.1038/nature05058.
  • Rivet, C., Lee, H., Hirsch, A., Hamilton, S., Lu, H. (2011). Microfluidics for medical diagnostics and biosensors. Chemical Engineering Science, 66(7): 1490–507. doi: 10.1016/j.ces.2010.08.015.
  • Tosun, E., Ozgur, T., Ozgur, C., Ozcanli, M., Serin, H., Aydin, K. (2017). Comparative analysis of various modelling techniques for emission prediction of diesel engine fueled by diesel fuel with nanoparticle additives. European Mechanical Science, 1(1): 15–23. doi: 10.26701/ems.320490.
  • Kaleli, A.R. (2019). Gray based Fuzzy Gain-Scheduling PID Controller Design for Air-Fuel System Under Variable Engine Operating Conditions. European Mechanical Science, 3(4): 125–32. doi: 10.26701/ems.599452.
  • Lu, M., Ozcelik, A., Grigsby, C.L.C.L. Zhao, Y., Guo, F., Leong, K.W.K.W., et al., (2016). Microfluidic hydrodynamic focusing for synthesis of nanomaterials. Nano Today, 11(6): 778–92. doi: 10.1016/j.nantod.2016.10.006.
  • Li, Z., Mak, S.Y., Sauret, A., Shum, H.C. (2014). Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy. Lab on a Chip, 14(4): 744. doi: 10.1039/c3lc51176f.
  • Wijnen, B., Hunt, E.J., Anzalone, G.C., Pearce, J.M. (2014). Open-Source Syringe Pump Library. PLoS ONE, 9(9): e107216. doi: 10.1371/journal.pone.0107216.
  • Pearce, J.M. (2014). Cut costs with open-source hardware. Nature, 505(7485): 618–618. doi: 10.1038/505618d.
  • Pearce, J.M. (2012). Building Research Equipment with Free, Open-Source Hardware. Science, 337(6100): 1303–4. doi: 10.1126/science.1228183.
  • Juarez, A., Maynard, K., Skerrett, E., Molyneux, E., Richards-Kortum, R., Dube, Q., et al. (2016). AutoSyP: A Low-Cost, Low-Power Syringe Pump for Use in Low-Resource Settings. The American Journal of Tropical Medicine and Hygiene, 95(4): 964–9. doi: 10.4269/ajtmh.16-0285.
  • Skerrett, E., Kommwa, E., Maynard, K., Juarez, A., Mataya, R., Richards-Kortum, R., et al. (2017). Evaluation of a low-cost, low-power syringe pump to deliver magnesium sulfate intravenously to pre-eclamptic women in a Malawian referral hospital. BMC Pregnancy and Childbirth, 17(1): 191. doi: 10.1186/s12884-017-1382-9.
  • Zhang, P., Bachman, H., Ozcelik, A., Huang, T.J. (2020). Acoustic Microfluidics. Annual Review of Analytical Chemistry, 13(1): 17–43. doi: 10.1146/annurev-anchem-090919-102205.
  • Wu, M., Ozcelik, A., Rufo, J., Wang, Z., Fang, R., Jun Huang, T. (2019). Acoustofluidic separation of cells and particles. Microsystems & Nanoengineering, 5(1): 32. doi: 10.1038/s41378-019-0064-3.
  • Lake, J.R., Heyde, K.C., Ruder, W.C. (2017). Low-cost feedback-controlled syringe pressure pumps for microfluidics applications. PLOS ONE, 12(4): e0175089. doi: 10.1371/journal.pone.0175089.
  • Guelig, D., Bauer, J., Wollen, A., Schiller, C., Sherman-Konkle, J., Roche, A., et al. (2017). Design of a Novel, Adjustable Flow Rate, Reusable, Electricity-Free, Low-Cost Syringe Infusion Pump. Journal of Medical Devices, 11(4): 1–6. doi: 10.1115/1.4037935.
  • Amarante, L.M., Newport, J., Mitchell, M., Wilson, J., Laubach, M. (2019). An Open Source Syringe Pump Controller for Fluid Delivery of Multiple Volumes. Eneuro, 6(5): ENEURO.0240-19.2019. doi: 10.1523/ENEURO.0240-19.2019.
  • Booeshaghi, A.S., Beltrame, E. da V., Bannon, D., Gehring, J., Pachter, L. (2019). Principles of open source bioinstrumentation applied to the poseidon syringe pump system. Scientific Reports, 9(1): 12385. doi: 10.1038/s41598-019-48815-9.
  • Pusch, K., Hinton, T.J., Feinberg, A.W. (2018). Large volume syringe pump extruder for desktop 3D printers. HardwareX, 3(November 2017): 49–61. doi: 10.1016/j.ohx.2018.02.001.
  • Cubberley, M.S., Hess, W.A. (2017). An Inexpensive Programmable Dual-Syringe Pump for the Chemistry Laboratory. Journal of Chemical Education, 94(1): 72–4. doi: 10.1021/acs.jchemed.6b00598.
  • Garcia, V.E., Liu, J., DeRisi, J.L. (2018). Low-cost touchscreen driven programmable dual syringe pump for life science applications. HardwareX, 4: e00027. doi: 10.1016/j.ohx.2018.e00027.
There are 21 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Fatih Akkoyun 0000-0002-1432-8926

Adem Özçelik 0000-0002-3124-795X

Publication Date December 20, 2020
Acceptance Date September 4, 2020
Published in Issue Year 2020 Volume: 4 Issue: 4

Cite

APA Akkoyun, F., & Özçelik, A. (2020). A Simple Approach for Controlling an Open-Source Syringe Pump. European Mechanical Science, 4(4), 166-170. https://doi.org/10.26701/ems.769837
AMA Akkoyun F, Özçelik A. A Simple Approach for Controlling an Open-Source Syringe Pump. EMS. December 2020;4(4):166-170. doi:10.26701/ems.769837
Chicago Akkoyun, Fatih, and Adem Özçelik. “A Simple Approach for Controlling an Open-Source Syringe Pump”. European Mechanical Science 4, no. 4 (December 2020): 166-70. https://doi.org/10.26701/ems.769837.
EndNote Akkoyun F, Özçelik A (December 1, 2020) A Simple Approach for Controlling an Open-Source Syringe Pump. European Mechanical Science 4 4 166–170.
IEEE F. Akkoyun and A. Özçelik, “A Simple Approach for Controlling an Open-Source Syringe Pump”, EMS, vol. 4, no. 4, pp. 166–170, 2020, doi: 10.26701/ems.769837.
ISNAD Akkoyun, Fatih - Özçelik, Adem. “A Simple Approach for Controlling an Open-Source Syringe Pump”. European Mechanical Science 4/4 (December 2020), 166-170. https://doi.org/10.26701/ems.769837.
JAMA Akkoyun F, Özçelik A. A Simple Approach for Controlling an Open-Source Syringe Pump. EMS. 2020;4:166–170.
MLA Akkoyun, Fatih and Adem Özçelik. “A Simple Approach for Controlling an Open-Source Syringe Pump”. European Mechanical Science, vol. 4, no. 4, 2020, pp. 166-70, doi:10.26701/ems.769837.
Vancouver Akkoyun F, Özçelik A. A Simple Approach for Controlling an Open-Source Syringe Pump. EMS. 2020;4(4):166-70.

Cited By













Dergi TR Dizin'de Taranmaktadır.

Flag Counter