Research Article
BibTex RIS Cite

Üretim parametrelerinin, lazer toz yatağı füzyon yöntemi ile üretilen kafes yapıların çarpılma, boyutsal değişim ve yüzey pürüzlülüğü üzerindeki etkisi

Year 2024, , 101 - 112, 21.08.2023
https://doi.org/10.17341/gazimmfd.1168768

Abstract

Yüksek ısı transfer kabiliyeti, enerji absorbe edebilme ve ses izolasyonu özelliklerinden dolayı kafes yapılar havacılık, otomotiv ve biyomedikal sanayii başta olmak üzere bir çok alanda kullanılmaktadır. Kafes yapıların bu kabiliyetleri üzerinde farklı proses ve geometrik parametreler etkili olmaktadır. Farklı endüstriyel uygulamalarda, ilgili kafes yapısının uygun proses ve geometrik parametreler ile birlikte kullanılmasının, uygulama sonucu elde edilen verimi arttıracağı bilinen bir gerçektir. Bu çalışma, Taguchi deney tasarımı kullanarak, kafes yapılarda, kafes yapı çeşidinin, inşa yönünün ve hacim oranının, üretimden sonra parçada meydana gelecek çarpılma, yüzey pürüzlülüğü ve duvar kalınlık değişimi üzerindeki etkisini deneysel olarak incelemeye odaklanmıştır. Üretim için lazer toz yatağı füzyon yöntemi ve CoCrMo malzeme kullanılmıştır. Her bir parametrenin çarpılma, yüzey pürüzlülüğü ve duvar kalınlık değişimi üzerindeki etkisi ve optimum parametre seti, değişkenlerin analizi (ANOVA) metodu ile bulunmuştur. Yüzey pürüzlülüğü için en optimum parametre seti elmas kafes yapısı, 0,2 hacim oranı ve 90o inşa yönü olarak belirlenmiştir. Duvar kalınlığındaki değişim için ise en optimum parametre seti gyroid kafes yapısı, 0,4 hacim oranı ve 45o inşa yönü olarak belirlenmiştir.

Supporting Institution

Tübitak

Project Number

5158001

Thanks

Bu çalışma TÜBİTAK Teknoloji ve Yenilik Destek Programı kapsamında desteklenmiştir (Proje No: 5158001)

References

  • Yuan, L., Ding, S., Wen, C., Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review, Bioactive Materials, 4, 56-70, 2019.
  • Zhang, X. Z., Leary, M., Tang, H. P., Song, T., Qian, M., Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges, Current Opinion in Solid State and Material Science, 22 (3), 75-99, 2018.
  • Yan, C., Hao, L., Yang, L., Hussein, A. Y., Young, P. G., Li, Z., Li, Y., Triply Periodic Minimal Surface Lattices Additively Manufactured by Selective Laser Melting, Huazhong University of Science and Technology Press, Wuhan, China, 1-25, 2021.
  • Dallago, M., Winiarski, B., Zanini, F., Carmignato, S., Benedetti, M., On the effect of geometrical imperfections and defects on the fatigue strength of cellular lattice structures additively manufactured via Selective Laser Melting, International Journal of Fatigue, 124, 348-360, 2019.
  • Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M., SLM lattice structures: Properties, performance, applications and challenges, Materials and Design, 183, 108-137, 2019.
  • Korkmaz, M. E., Gupta, M. K., Robak, G., Moj, K., Krolczyk, G. M., Kuntoğlu, M., Development of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges, Journal of Manufacturing Processes, 81, 1040-1063, 2022.
  • Helou, M., Kara, S., Design, analysis and manufacturing of lattice structures: an overview, International Journal of Computer Integrated Manufacturing, 31 (3), 243-261, 2018.
  • Najmon, J. C., Raeisi, S., Tovar, A., Review of additive manufacturing technologies and applications in the aerospace industry, Additive Manufacturing for the Aerospace Industry, Editör: Froes, F., Boyer, R., Elsevier Publishing, Amsterdam, Netherlands, 7-31, 2019.
  • Avila, J. D., Bose, S., Bandyopadhyay, A. Additive manufacturing of titanium and titanium alloys for biomedical applications, Titanium in Medical and Dental Applications, Editör: Froes, F. H., Qian, M., Woodhead Publishing Series in Biomaterials, Sawston, UK, 325-343, 2018.
  • Sefene, E. M. State-of-the-art of selective laser melting process: A comprehensive review, Journal of Manufacturing Systems, 63, 250-274, 2022.
  • Flores, I., Kretzschmar, N., Azman, A. H., Chekurov, S., Pedersen, D. B., Chaudhuri, A., Implications of lattice structures on economics and productivity of metal powder bed fusion, Additive Manufacturing, 31, 100947, 2020.
  • Bartolomeu, F., Dourado, N., Pereira, F., Alves, N., Miranda, G., Silva, F. S., Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties, Materials Science & Engineering C, 107, 110342, 2020.
  • Bartolomeu, F., Fonseca, J., Peixinho, N., Alves, N., Gasik, M., Silva, F. S., Miranda., G., Predicting the output dimensions, porosity and elastic modulus of additive manufactured biomaterial structures targeting orthopedic implants, Journal of the Mechanical Behavior of Biomedical Materials, 99, 104-117, 2019.
  • Ran, Q., Yang, W., Hu, Y., Shen, X., Yu, Y., Xiang, Y., Cai, K., Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes, Journal of the Mechanical Behavior of Biomedical Materials, 84, 1-11, 2018.
  • Yan, C., Hao, L., Hussein, A., Young, P., Raymont, D., Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Materials & Design, 55, 533-541, 2014.
  • Rashid, R. A. R., Mallavarapu, J., Palanisamy, S., Masood, S. H., A comparative study of flexural properties of additively manufactured aluminium lattice structures, Materials Today: Proceedings, 4, 8597-8604, 2017.
  • Li, R., Liu, J., Shi, Y., Wang, L., Jiang, W., Balling behavior of stainless steel and nickel powder during selective laser melting process, International Journal of Advanced Manufacturing Technology, 59, 1025-1035, 2012.
  • Sing, S. L., Miao, Y., Wiria, F. E., Yeong, W. Y., Manufacturability and mechanical testing considerations of metallic scaffolds fabricated using selective laser melting: a review, Biomedical Science and Engineering, 2 (11), 18-24, 2016.
  • Dallago, M., Zanini, F., Carmignato, S., Pasini, D., Benedetti, M., Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices, Procedia Structural Integrity, 13, 161-167, 2018.
  • Dallago, M., Raghavendra, S., Luchin, V., Zappini, G., Pasini, D., Benedetti, M., Geometric assessment of lattice materials built via Selective Laser Melting, Materials Today: Proceedings, 7, 353-361, 2019.
  • Leary, M., Mazur, M., Mcmillan, M., Chirent, T., Sun, Y. Y., Qian, M., Easton, M. Brandt, M., Selective laser melting (SLM) of AlSi12Mg lattice structures, Materials and Design, 98, 344-357, 2016.
  • Choy, S. Y., Sun, C. N., Leong, K. F., Wei, J., Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density, Additive Manufacturing, 16, 213-224, 2017.
  • Feng, J., Fu, J., Yao, X., He, Y., Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications, International Journal of Extreme Manufacturing, 4 (2), 2022001.
  • Maskery, I., Sturm, L., Aremu, A. O., Panesar, A., Williams, C. B., Tuck, C. J., Wildman, R. D., Ashcroft, I. A., Hague, R. J. M., Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing, Polymer, 152, 62-71, 2018.
  • Emmelmann, C., Herzog, D., Kranz, J., Design for laser additive manufacturing, Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Editör: Brandt, M., Woodhead Publishing Series in Electronic and Optical Materials, Sawston, UK, 259-279, 2017.
  • Alfaify, A., Saleh, M., Abdullah, F. M., Al-Ahmari, A. M., Design for additive manufacturing: a systematic review, Sustainability, 12, 7936, 2020.
  • Gülcan, O., Günaydın, K., Distortion and dimensional deviation of Inconel 718 auxetic structures produced by DMLM, Journal of Additive Manufacturing Technologies, 1(3), 563, 2021.
  • Leary, M., Design of titanium implants for additive manufacturing, Titanium in Medical and Dental Applications, Editör: Froes, F. H., Qian, M., Woodhead Publishing Series in Biomaterials, Sawston, UK, 203-224, 2018.
  • Zhang, L., Feih, S., Daynes, S., Chang, S., Wang, M. Y., Wei, J., Lu, W. F., Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Additive Manufacturing, 23, 505-515, 2018.
  • Al‐Ketan, O., Rowshan, R., Abu Al‐Rub, R. K., Topology mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials, Additive Manufacturing, 19, 167-183, 2018.
  • Cansizoglu, O., Harrysson, O., Cormier, D., West, H., Mahale, T., Properties of Ti–6Al–4V non-stochastic lattice structures fabricated via electron beam melting, Materials Science and Engineering: A, 492 (1–2), 468-474, 2008.
  • Weißmann, V., Drescher, P., Bader, R., Seitz, H., Hansmann, H., Laufer, N., Comparison of single Ti6Al4V struts made using selective laser melting and electron beam melting subject to part orientation, Metals, 7(3), 91, 2017.
  • Bobbert, F.S.L., Lietaert, K., Eftekhari, A. A., Pouran, B., Ahmadi, S. M., Weinans, H., Zadpoor, A. A., Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomaterialia, 53, 572-584, 2017.
  • Yang, E., Leary, M., Lozanovski, B., Downing, D., Mazur, M., Sarker, A., Khorasani, A. M., Jones, A., Maconachie, T., Bateman, S., Easton, M., Qian, M., Choong, P., Brandt, M., Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: A numerical study, Materials & Design, 184, 108165, 2019.
  • Wang, N., Meenashisundaram, G. K., Chang, S., Fuh, J. Y. H., Dheen, S. T., Kumar, A. S., A comparative investigation on the mechanical properties and cytotoxicity of Cubic, Octet, and TPMS gyroid structures fabricated by selective laser melting of stainless steel 316L, Journal of the Mechanical Behavior of Biomedical Materials, 129, 105151, 2022.
  • Yan, C., Hao, L., Hussein, A., Raymont, D., Evaluations of cellular lattice structures manufactured using selective laser melting, International Journal of Machine Tools and Manufacture, 62, 32-38, 2012.
  • Qu, S., Ding, J., Song, X., Achieving triply periodic minimal surface thin-walled structures by micro laser powder bed fusion process, Micromachines, 12, 705, 2021.
  • Sokollu, B., Gulcan, O., Konukseven, E. I., Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting, Additive Manufacturing, 103199, 2022.
  • Al-Ketan, O., Abu Al-Rub, R. K., Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices, Advanced Engineering Materials, 21(10), 1900524, 2019.
Year 2024, , 101 - 112, 21.08.2023
https://doi.org/10.17341/gazimmfd.1168768

Abstract

Project Number

5158001

References

  • Yuan, L., Ding, S., Wen, C., Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review, Bioactive Materials, 4, 56-70, 2019.
  • Zhang, X. Z., Leary, M., Tang, H. P., Song, T., Qian, M., Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges, Current Opinion in Solid State and Material Science, 22 (3), 75-99, 2018.
  • Yan, C., Hao, L., Yang, L., Hussein, A. Y., Young, P. G., Li, Z., Li, Y., Triply Periodic Minimal Surface Lattices Additively Manufactured by Selective Laser Melting, Huazhong University of Science and Technology Press, Wuhan, China, 1-25, 2021.
  • Dallago, M., Winiarski, B., Zanini, F., Carmignato, S., Benedetti, M., On the effect of geometrical imperfections and defects on the fatigue strength of cellular lattice structures additively manufactured via Selective Laser Melting, International Journal of Fatigue, 124, 348-360, 2019.
  • Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M., SLM lattice structures: Properties, performance, applications and challenges, Materials and Design, 183, 108-137, 2019.
  • Korkmaz, M. E., Gupta, M. K., Robak, G., Moj, K., Krolczyk, G. M., Kuntoğlu, M., Development of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges, Journal of Manufacturing Processes, 81, 1040-1063, 2022.
  • Helou, M., Kara, S., Design, analysis and manufacturing of lattice structures: an overview, International Journal of Computer Integrated Manufacturing, 31 (3), 243-261, 2018.
  • Najmon, J. C., Raeisi, S., Tovar, A., Review of additive manufacturing technologies and applications in the aerospace industry, Additive Manufacturing for the Aerospace Industry, Editör: Froes, F., Boyer, R., Elsevier Publishing, Amsterdam, Netherlands, 7-31, 2019.
  • Avila, J. D., Bose, S., Bandyopadhyay, A. Additive manufacturing of titanium and titanium alloys for biomedical applications, Titanium in Medical and Dental Applications, Editör: Froes, F. H., Qian, M., Woodhead Publishing Series in Biomaterials, Sawston, UK, 325-343, 2018.
  • Sefene, E. M. State-of-the-art of selective laser melting process: A comprehensive review, Journal of Manufacturing Systems, 63, 250-274, 2022.
  • Flores, I., Kretzschmar, N., Azman, A. H., Chekurov, S., Pedersen, D. B., Chaudhuri, A., Implications of lattice structures on economics and productivity of metal powder bed fusion, Additive Manufacturing, 31, 100947, 2020.
  • Bartolomeu, F., Dourado, N., Pereira, F., Alves, N., Miranda, G., Silva, F. S., Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties, Materials Science & Engineering C, 107, 110342, 2020.
  • Bartolomeu, F., Fonseca, J., Peixinho, N., Alves, N., Gasik, M., Silva, F. S., Miranda., G., Predicting the output dimensions, porosity and elastic modulus of additive manufactured biomaterial structures targeting orthopedic implants, Journal of the Mechanical Behavior of Biomedical Materials, 99, 104-117, 2019.
  • Ran, Q., Yang, W., Hu, Y., Shen, X., Yu, Y., Xiang, Y., Cai, K., Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes, Journal of the Mechanical Behavior of Biomedical Materials, 84, 1-11, 2018.
  • Yan, C., Hao, L., Hussein, A., Young, P., Raymont, D., Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Materials & Design, 55, 533-541, 2014.
  • Rashid, R. A. R., Mallavarapu, J., Palanisamy, S., Masood, S. H., A comparative study of flexural properties of additively manufactured aluminium lattice structures, Materials Today: Proceedings, 4, 8597-8604, 2017.
  • Li, R., Liu, J., Shi, Y., Wang, L., Jiang, W., Balling behavior of stainless steel and nickel powder during selective laser melting process, International Journal of Advanced Manufacturing Technology, 59, 1025-1035, 2012.
  • Sing, S. L., Miao, Y., Wiria, F. E., Yeong, W. Y., Manufacturability and mechanical testing considerations of metallic scaffolds fabricated using selective laser melting: a review, Biomedical Science and Engineering, 2 (11), 18-24, 2016.
  • Dallago, M., Zanini, F., Carmignato, S., Pasini, D., Benedetti, M., Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices, Procedia Structural Integrity, 13, 161-167, 2018.
  • Dallago, M., Raghavendra, S., Luchin, V., Zappini, G., Pasini, D., Benedetti, M., Geometric assessment of lattice materials built via Selective Laser Melting, Materials Today: Proceedings, 7, 353-361, 2019.
  • Leary, M., Mazur, M., Mcmillan, M., Chirent, T., Sun, Y. Y., Qian, M., Easton, M. Brandt, M., Selective laser melting (SLM) of AlSi12Mg lattice structures, Materials and Design, 98, 344-357, 2016.
  • Choy, S. Y., Sun, C. N., Leong, K. F., Wei, J., Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density, Additive Manufacturing, 16, 213-224, 2017.
  • Feng, J., Fu, J., Yao, X., He, Y., Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications, International Journal of Extreme Manufacturing, 4 (2), 2022001.
  • Maskery, I., Sturm, L., Aremu, A. O., Panesar, A., Williams, C. B., Tuck, C. J., Wildman, R. D., Ashcroft, I. A., Hague, R. J. M., Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing, Polymer, 152, 62-71, 2018.
  • Emmelmann, C., Herzog, D., Kranz, J., Design for laser additive manufacturing, Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Editör: Brandt, M., Woodhead Publishing Series in Electronic and Optical Materials, Sawston, UK, 259-279, 2017.
  • Alfaify, A., Saleh, M., Abdullah, F. M., Al-Ahmari, A. M., Design for additive manufacturing: a systematic review, Sustainability, 12, 7936, 2020.
  • Gülcan, O., Günaydın, K., Distortion and dimensional deviation of Inconel 718 auxetic structures produced by DMLM, Journal of Additive Manufacturing Technologies, 1(3), 563, 2021.
  • Leary, M., Design of titanium implants for additive manufacturing, Titanium in Medical and Dental Applications, Editör: Froes, F. H., Qian, M., Woodhead Publishing Series in Biomaterials, Sawston, UK, 203-224, 2018.
  • Zhang, L., Feih, S., Daynes, S., Chang, S., Wang, M. Y., Wei, J., Lu, W. F., Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Additive Manufacturing, 23, 505-515, 2018.
  • Al‐Ketan, O., Rowshan, R., Abu Al‐Rub, R. K., Topology mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials, Additive Manufacturing, 19, 167-183, 2018.
  • Cansizoglu, O., Harrysson, O., Cormier, D., West, H., Mahale, T., Properties of Ti–6Al–4V non-stochastic lattice structures fabricated via electron beam melting, Materials Science and Engineering: A, 492 (1–2), 468-474, 2008.
  • Weißmann, V., Drescher, P., Bader, R., Seitz, H., Hansmann, H., Laufer, N., Comparison of single Ti6Al4V struts made using selective laser melting and electron beam melting subject to part orientation, Metals, 7(3), 91, 2017.
  • Bobbert, F.S.L., Lietaert, K., Eftekhari, A. A., Pouran, B., Ahmadi, S. M., Weinans, H., Zadpoor, A. A., Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomaterialia, 53, 572-584, 2017.
  • Yang, E., Leary, M., Lozanovski, B., Downing, D., Mazur, M., Sarker, A., Khorasani, A. M., Jones, A., Maconachie, T., Bateman, S., Easton, M., Qian, M., Choong, P., Brandt, M., Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: A numerical study, Materials & Design, 184, 108165, 2019.
  • Wang, N., Meenashisundaram, G. K., Chang, S., Fuh, J. Y. H., Dheen, S. T., Kumar, A. S., A comparative investigation on the mechanical properties and cytotoxicity of Cubic, Octet, and TPMS gyroid structures fabricated by selective laser melting of stainless steel 316L, Journal of the Mechanical Behavior of Biomedical Materials, 129, 105151, 2022.
  • Yan, C., Hao, L., Hussein, A., Raymont, D., Evaluations of cellular lattice structures manufactured using selective laser melting, International Journal of Machine Tools and Manufacture, 62, 32-38, 2012.
  • Qu, S., Ding, J., Song, X., Achieving triply periodic minimal surface thin-walled structures by micro laser powder bed fusion process, Micromachines, 12, 705, 2021.
  • Sokollu, B., Gulcan, O., Konukseven, E. I., Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting, Additive Manufacturing, 103199, 2022.
  • Al-Ketan, O., Abu Al-Rub, R. K., Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices, Advanced Engineering Materials, 21(10), 1900524, 2019.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Orhan Gülcan 0000-0002-6688-2662

Ugur Simsek 0000-0002-4405-5420

Mirhan Özdemir 0000-0003-0639-5229

Kadir Günaydın 0000-0002-3045-130X

Emre Tekoğlu 0000-0003-1219-6226

Project Number 5158001
Early Pub Date May 5, 2023
Publication Date August 21, 2023
Submission Date September 6, 2022
Acceptance Date January 1, 2023
Published in Issue Year 2024

Cite

APA Gülcan, O., Simsek, U., Özdemir, M., Günaydın, K., et al. (2023). Üretim parametrelerinin, lazer toz yatağı füzyon yöntemi ile üretilen kafes yapıların çarpılma, boyutsal değişim ve yüzey pürüzlülüğü üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(1), 101-112. https://doi.org/10.17341/gazimmfd.1168768
AMA Gülcan O, Simsek U, Özdemir M, Günaydın K, Tekoğlu E. Üretim parametrelerinin, lazer toz yatağı füzyon yöntemi ile üretilen kafes yapıların çarpılma, boyutsal değişim ve yüzey pürüzlülüğü üzerindeki etkisi. GUMMFD. August 2023;39(1):101-112. doi:10.17341/gazimmfd.1168768
Chicago Gülcan, Orhan, Ugur Simsek, Mirhan Özdemir, Kadir Günaydın, and Emre Tekoğlu. “Üretim Parametrelerinin, Lazer Toz yatağı füzyon yöntemi Ile üretilen Kafes yapıların çarpılma, Boyutsal değişim Ve yüzey pürüzlülüğü üzerindeki Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 1 (August 2023): 101-12. https://doi.org/10.17341/gazimmfd.1168768.
EndNote Gülcan O, Simsek U, Özdemir M, Günaydın K, Tekoğlu E (August 1, 2023) Üretim parametrelerinin, lazer toz yatağı füzyon yöntemi ile üretilen kafes yapıların çarpılma, boyutsal değişim ve yüzey pürüzlülüğü üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 1 101–112.
IEEE O. Gülcan, U. Simsek, M. Özdemir, K. Günaydın, and E. Tekoğlu, “Üretim parametrelerinin, lazer toz yatağı füzyon yöntemi ile üretilen kafes yapıların çarpılma, boyutsal değişim ve yüzey pürüzlülüğü üzerindeki etkisi”, GUMMFD, vol. 39, no. 1, pp. 101–112, 2023, doi: 10.17341/gazimmfd.1168768.
ISNAD Gülcan, Orhan et al. “Üretim Parametrelerinin, Lazer Toz yatağı füzyon yöntemi Ile üretilen Kafes yapıların çarpılma, Boyutsal değişim Ve yüzey pürüzlülüğü üzerindeki Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/1 (August 2023), 101-112. https://doi.org/10.17341/gazimmfd.1168768.
JAMA Gülcan O, Simsek U, Özdemir M, Günaydın K, Tekoğlu E. Üretim parametrelerinin, lazer toz yatağı füzyon yöntemi ile üretilen kafes yapıların çarpılma, boyutsal değişim ve yüzey pürüzlülüğü üzerindeki etkisi. GUMMFD. 2023;39:101–112.
MLA Gülcan, Orhan et al. “Üretim Parametrelerinin, Lazer Toz yatağı füzyon yöntemi Ile üretilen Kafes yapıların çarpılma, Boyutsal değişim Ve yüzey pürüzlülüğü üzerindeki Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 1, 2023, pp. 101-12, doi:10.17341/gazimmfd.1168768.
Vancouver Gülcan O, Simsek U, Özdemir M, Günaydın K, Tekoğlu E. Üretim parametrelerinin, lazer toz yatağı füzyon yöntemi ile üretilen kafes yapıların çarpılma, boyutsal değişim ve yüzey pürüzlülüğü üzerindeki etkisi. GUMMFD. 2023;39(1):101-12.