Research Article
BibTex RIS Cite

Keson yanaşma yapılarının dinamik davranışı

Year 2022, , 655 - 670, 28.02.2022
https://doi.org/10.17341/gazimmfd.680927

Abstract

Keson tip yanaşma yapılarının stabiliteleri (dayanımları) yer değiştirmeler göz önüne alınarak iki farklı durum için incelenmiştir: Birinci durumda, farklı frekanslara sahip döngüsel yükleme keson tip yanaşma yapısına uygulanmış ve yapı üzerindeki yatay deplasmanlar (hasar) ölçülmüştür sonrasında döngüsel yükleme sonucunda oluşan hasar görmüş kesit her deneyden sonra onarılarak deneyler benzer şekilde gerçekleştirilmiştir;ikinci durumda, birinci durum için kullanılan döngüsel yükleme yapıya peş peşe ve yapı onarılmadan uygulanmış ve yapı üzerindeki yer değiştirmeler ölçülmüştür. Her iki durum için yapılan deneyler tamamlandıktan sonra, ölçülen yer değiştirmeler karşılaştırılmıştır. Deney sonuçlarına göre aynı döngüsel yükleme için ikinci durumdaki yer değiştirmelerin birinci durumda ki yer değiştirmelerden daha az olduğu görülmüştür. Ayrıca, birinci durum için beton ve anroşman arasındaki anlık dinamik sürtünme katsayısı deney sonuçları kullanılarak hesaplanmıştır. Anlık dinamik sürtünme katsayısı ile statik sürtünme katsayısı arasındaki oranın 1 değeri etrafında salındığı görülmüştür. Rölatif ivme değerlerinin iki kere integrasyonu ile hesaplanan yer değiştirmeler ve deneyler sırasında ölçülen yer değiştirmeler arasında iyi bir uyum bulunmaktadır.

Supporting Institution

TÜBİTAK

Project Number

111Y006

Thanks

Yazarlar, “Blok Tipi Yanaşma Yapılarının Basitleştirilmiş Dinamik Analizi” projesine sponsor olan Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'na (TÜBİTAK) teşekkür eder. (Proje No: 111Y006).

References

  • [1] PIANC (2001), Seismic design guidelines for port structures. Rotterdam: Balkema.
  • [2] Sugano, T., Morita, T., Mito, M., Sasaki, T. ve Inagaki, H. (1996), Case Studies of Caisson Type Quay Wall Damage by 1995 Hyogoken-Nanbu Earthquake , Eleventh world conference on earthquake engineering, Elsevier Science Ltd.1996
  • [3] Sumer,B. M, Ansal, A., Cetin, K.O, Damgaard, J., Gunbak, A.R, Hansen, N.O, Sawicki, A., Synolakis, C.E, Yalciner, A.C.,Yuksel, Y., Zen, K (2007), Earthquake-Induced Liquefaction around Marine Structures, Journal of Waterway, Port, Coastal, And Ocean Engineering © ASCE, Vol: 133, Issue: 1, Pp: 55-82
  • [4] Cihan, H. K, Ergin, A., Cihan, K., Guler, I., (2015), Dynamic responses of two blocks under dynamic loading using experimental and numerical studies, Applied Ocean Research, 49, 72-82.
  • [5] Yuksel, Y., Yuksel, Z. T., Cevik, E., Orhan, K., Berilgen, M., (2017), Evaluation of the seismic performance of a caisson and an L-type quay wall, Soil Dynamics and Earthquake Engineering, 92 (2017) 537–550.
  • [6] Ghalandarzadeh A, Orita T, Towhata I, Yun F. (1995), Shaking table tests on seismic deformation of gravity quay walls. Soils Found 1998;38(2):115–32 (Special Issue on Geotechnical Aspects ofthe January 17, Hyogoken-Nambu Earthquake)
  • [7] Woodward PK, Griffiths DV. Comparison of the pseudo-static and dynamic behavior of gravity retaining walls. J Geotech Geol Eng 1996;14:269–90
  • [8] Zeng X. (1998), Seismic response of gravity quay walls—I: centrifuge modeling. J Geotech Geoenviron Eng;124(5):406–17.
  • [9] Madabhushi SPG, Zeng X. (1998), Seismic response of gravity quay walls—II: numerical modeling. J Geotech Geoenviron Eng;124(5):418–27.
  • [10] Dewoolkar MM, Ko HY, Pak RYS. (2000), Experimental developments for studying static and seismic behavior of retaining walls with liquefiable backfills. Soil Dyn Earthq Eng;19:583–93.
  • [11] Kim SR, Kwon OS, Kim MM. (2004), Evaluation of force components acting on gravity type quay walls during earthquakes, Soil Dynamics and Earthquake Engineering;24:853–66.
  • [12] Kim SR, Jang IS, Chung CK, Kim MM. (2005), Evaluation of seismic displacements of quay walls. Soil Dyn Earthq Eng;25:451–9.
  • [13] Lee CJ. (2005), Centrifuge modeling of the behavior of caisson-type quay walls during earthquakes, Soil Dynamics and Earthquake Engineering, 25:117–31.
  • [14] Choudhury D, Ahmad SM. (2007), Design of waterfront retaining wall for the passive case under earthquake and tsunami. Appl Ocean Res;29:37–44.
  • [15] Choudhury D, Ahmad SM. (2009), External stability of waterfront reinforced soil structures under seismic conditions using a pseudo-static approach. Geosynth Int;16(1):1–10.
  • [16] Na UJ, Chaudhuri SR, Shinozuka M. (2008), Probabilistic assessment for seismic performance of port structures. Soil Dyn Earthq Eng;28:147–58.
  • [17] Mostafavi Moghadam AA, Ghalandarzadeh A, Towhata I, Moradi M, Ebrahimian B, Haji Alikhani P. (2009), Studying the effects of deformable panels on seismic displacement of gravity quay walls. Ocean Eng;36:1129–48.
  • [18] Mostafavi Moghadam AA, Ghalandarzadeh A, Moradi M, Towhata I, Haji Alikhani P (2011), Displacement reducer fuses for improving seismic performance of caisson quay walls. Bull Earthquake Eng 9:1259-1288
  • [19] Maleki S, Mahjoubi S. (2010), A new approach for estimating the seismic soil pressure on retaining walls. Sci Iran;17(4):273, 284, Sharif University of Technology.
  • [20] Tiznado F, Roa R. (2011), Seismic lateral movement prediction for gravity retaining walls on granular soils. Soil Dyn Earthq Eng;31:391–400.
  • [21] Torisu SS, Sato J, Towhata I, Honda T. (2010), 1-g model tests and hollow cylindrical torsional shear experiments on seismic residual displacements of fill dams from the view point of seismic performance-based design. Soil Dyn Earthq Eng;30:423–37.
  • [22] Mendez, B.C., Botero, E., Romo, M.P., (2009), A New Friction Law for Sliding Rigid Blocks Under Cyclic Loading, Soil Dynamics and Earthquake Engineering, 29 (2009) 874–882.
  • [23] Hsieh, Y.M., Lee, K.C., Jeng, F.S., Huang, T.H., (2010)., Can Tilt Tests Provide Correct Insight Regarding Frictional Behavior of Sliding Rock Block Under Seismic Excitation?, Engineering Geology.
  • [24] Memos, C.D. and Protonotarios, J. “Patras breakwater failure due to seismic loading”, 23rd International Conference on Coastal Engineering, 4-9 Oct. 1992, Venice, Italy, Chapter 225, pp. 3343-3356.
  • [25] Center for Civil Engineering research and Codes (CUR), (2005), “Quay Wall Hand Book”, 717 Pages, published by CUR, PO Box 420, 2800 AK, Gouda, The Netherland, ISBN 0 415 364396.
  • [26] Iai S. (2002), Similitude for shaking table tests on soil–structure–fluid in 1g gravitational; 1989Ashfordand Sitar.
  • [27] Karakus, H. (2013), Experımental And Numerıcal Studıes On Block Type Quay Walls Under Dynamıc Loadıng, PhD Thesis, Mıddle East Technıcal Unıversıty.
  • [28] Turkish Seismic Code for Coastal and Harbor Constructions, Railway, Airport Constructions (2008). Official Gazette No. 26617 and 27092.
  • [29] The Overseas Coastal Area Development Institute of Japan (OCDI), Technical standards and commentaries for port and harbor facilities in Japan [Goda Y, Tabata T, Yamamoto S, Trans.]. Daikousha Printing Co., Ltd.; 2009
  • [30]Richards R, Elms D. Seismic behavior of gravity retaining walls. J Geotech Eng Div 1979;105(4):449–64.
  • [31]Whitman RV, Liao S. Seismic design of retaining walls. Miscellaneous paper GL-85-1, US Army engineer waterways experiment station, Vicksburg, MS 1985.
Year 2022, , 655 - 670, 28.02.2022
https://doi.org/10.17341/gazimmfd.680927

Abstract

Project Number

111Y006

References

  • [1] PIANC (2001), Seismic design guidelines for port structures. Rotterdam: Balkema.
  • [2] Sugano, T., Morita, T., Mito, M., Sasaki, T. ve Inagaki, H. (1996), Case Studies of Caisson Type Quay Wall Damage by 1995 Hyogoken-Nanbu Earthquake , Eleventh world conference on earthquake engineering, Elsevier Science Ltd.1996
  • [3] Sumer,B. M, Ansal, A., Cetin, K.O, Damgaard, J., Gunbak, A.R, Hansen, N.O, Sawicki, A., Synolakis, C.E, Yalciner, A.C.,Yuksel, Y., Zen, K (2007), Earthquake-Induced Liquefaction around Marine Structures, Journal of Waterway, Port, Coastal, And Ocean Engineering © ASCE, Vol: 133, Issue: 1, Pp: 55-82
  • [4] Cihan, H. K, Ergin, A., Cihan, K., Guler, I., (2015), Dynamic responses of two blocks under dynamic loading using experimental and numerical studies, Applied Ocean Research, 49, 72-82.
  • [5] Yuksel, Y., Yuksel, Z. T., Cevik, E., Orhan, K., Berilgen, M., (2017), Evaluation of the seismic performance of a caisson and an L-type quay wall, Soil Dynamics and Earthquake Engineering, 92 (2017) 537–550.
  • [6] Ghalandarzadeh A, Orita T, Towhata I, Yun F. (1995), Shaking table tests on seismic deformation of gravity quay walls. Soils Found 1998;38(2):115–32 (Special Issue on Geotechnical Aspects ofthe January 17, Hyogoken-Nambu Earthquake)
  • [7] Woodward PK, Griffiths DV. Comparison of the pseudo-static and dynamic behavior of gravity retaining walls. J Geotech Geol Eng 1996;14:269–90
  • [8] Zeng X. (1998), Seismic response of gravity quay walls—I: centrifuge modeling. J Geotech Geoenviron Eng;124(5):406–17.
  • [9] Madabhushi SPG, Zeng X. (1998), Seismic response of gravity quay walls—II: numerical modeling. J Geotech Geoenviron Eng;124(5):418–27.
  • [10] Dewoolkar MM, Ko HY, Pak RYS. (2000), Experimental developments for studying static and seismic behavior of retaining walls with liquefiable backfills. Soil Dyn Earthq Eng;19:583–93.
  • [11] Kim SR, Kwon OS, Kim MM. (2004), Evaluation of force components acting on gravity type quay walls during earthquakes, Soil Dynamics and Earthquake Engineering;24:853–66.
  • [12] Kim SR, Jang IS, Chung CK, Kim MM. (2005), Evaluation of seismic displacements of quay walls. Soil Dyn Earthq Eng;25:451–9.
  • [13] Lee CJ. (2005), Centrifuge modeling of the behavior of caisson-type quay walls during earthquakes, Soil Dynamics and Earthquake Engineering, 25:117–31.
  • [14] Choudhury D, Ahmad SM. (2007), Design of waterfront retaining wall for the passive case under earthquake and tsunami. Appl Ocean Res;29:37–44.
  • [15] Choudhury D, Ahmad SM. (2009), External stability of waterfront reinforced soil structures under seismic conditions using a pseudo-static approach. Geosynth Int;16(1):1–10.
  • [16] Na UJ, Chaudhuri SR, Shinozuka M. (2008), Probabilistic assessment for seismic performance of port structures. Soil Dyn Earthq Eng;28:147–58.
  • [17] Mostafavi Moghadam AA, Ghalandarzadeh A, Towhata I, Moradi M, Ebrahimian B, Haji Alikhani P. (2009), Studying the effects of deformable panels on seismic displacement of gravity quay walls. Ocean Eng;36:1129–48.
  • [18] Mostafavi Moghadam AA, Ghalandarzadeh A, Moradi M, Towhata I, Haji Alikhani P (2011), Displacement reducer fuses for improving seismic performance of caisson quay walls. Bull Earthquake Eng 9:1259-1288
  • [19] Maleki S, Mahjoubi S. (2010), A new approach for estimating the seismic soil pressure on retaining walls. Sci Iran;17(4):273, 284, Sharif University of Technology.
  • [20] Tiznado F, Roa R. (2011), Seismic lateral movement prediction for gravity retaining walls on granular soils. Soil Dyn Earthq Eng;31:391–400.
  • [21] Torisu SS, Sato J, Towhata I, Honda T. (2010), 1-g model tests and hollow cylindrical torsional shear experiments on seismic residual displacements of fill dams from the view point of seismic performance-based design. Soil Dyn Earthq Eng;30:423–37.
  • [22] Mendez, B.C., Botero, E., Romo, M.P., (2009), A New Friction Law for Sliding Rigid Blocks Under Cyclic Loading, Soil Dynamics and Earthquake Engineering, 29 (2009) 874–882.
  • [23] Hsieh, Y.M., Lee, K.C., Jeng, F.S., Huang, T.H., (2010)., Can Tilt Tests Provide Correct Insight Regarding Frictional Behavior of Sliding Rock Block Under Seismic Excitation?, Engineering Geology.
  • [24] Memos, C.D. and Protonotarios, J. “Patras breakwater failure due to seismic loading”, 23rd International Conference on Coastal Engineering, 4-9 Oct. 1992, Venice, Italy, Chapter 225, pp. 3343-3356.
  • [25] Center for Civil Engineering research and Codes (CUR), (2005), “Quay Wall Hand Book”, 717 Pages, published by CUR, PO Box 420, 2800 AK, Gouda, The Netherland, ISBN 0 415 364396.
  • [26] Iai S. (2002), Similitude for shaking table tests on soil–structure–fluid in 1g gravitational; 1989Ashfordand Sitar.
  • [27] Karakus, H. (2013), Experımental And Numerıcal Studıes On Block Type Quay Walls Under Dynamıc Loadıng, PhD Thesis, Mıddle East Technıcal Unıversıty.
  • [28] Turkish Seismic Code for Coastal and Harbor Constructions, Railway, Airport Constructions (2008). Official Gazette No. 26617 and 27092.
  • [29] The Overseas Coastal Area Development Institute of Japan (OCDI), Technical standards and commentaries for port and harbor facilities in Japan [Goda Y, Tabata T, Yamamoto S, Trans.]. Daikousha Printing Co., Ltd.; 2009
  • [30]Richards R, Elms D. Seismic behavior of gravity retaining walls. J Geotech Eng Div 1979;105(4):449–64.
  • [31]Whitman RV, Liao S. Seismic design of retaining walls. Miscellaneous paper GL-85-1, US Army engineer waterways experiment station, Vicksburg, MS 1985.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Hülya Karakuş Cihan 0000-0001-9596-474X

Kubilay Cihan 0000-0002-0177-4345

Project Number 111Y006
Publication Date February 28, 2022
Submission Date January 28, 2020
Acceptance Date August 2, 2021
Published in Issue Year 2022

Cite

APA Cihan, H. K., & Cihan, K. (2022). Keson yanaşma yapılarının dinamik davranışı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(2), 655-670. https://doi.org/10.17341/gazimmfd.680927
AMA Cihan HK, Cihan K. Keson yanaşma yapılarının dinamik davranışı. GUMMFD. February 2022;37(2):655-670. doi:10.17341/gazimmfd.680927
Chicago Cihan, Hülya Karakuş, and Kubilay Cihan. “Keson yanaşma yapılarının Dinamik davranışı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no. 2 (February 2022): 655-70. https://doi.org/10.17341/gazimmfd.680927.
EndNote Cihan HK, Cihan K (February 1, 2022) Keson yanaşma yapılarının dinamik davranışı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 2 655–670.
IEEE H. K. Cihan and K. Cihan, “Keson yanaşma yapılarının dinamik davranışı”, GUMMFD, vol. 37, no. 2, pp. 655–670, 2022, doi: 10.17341/gazimmfd.680927.
ISNAD Cihan, Hülya Karakuş - Cihan, Kubilay. “Keson yanaşma yapılarının Dinamik davranışı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/2 (February 2022), 655-670. https://doi.org/10.17341/gazimmfd.680927.
JAMA Cihan HK, Cihan K. Keson yanaşma yapılarının dinamik davranışı. GUMMFD. 2022;37:655–670.
MLA Cihan, Hülya Karakuş and Kubilay Cihan. “Keson yanaşma yapılarının Dinamik davranışı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 37, no. 2, 2022, pp. 655-70, doi:10.17341/gazimmfd.680927.
Vancouver Cihan HK, Cihan K. Keson yanaşma yapılarının dinamik davranışı. GUMMFD. 2022;37(2):655-70.