Research Article
BibTex RIS Cite

Farklı özgül yüzey alanlarına sahip grafen nanoplakalar içeren su bazlı nanoakışkanların termofiziksel ve reolojik özelliklerinin deneysel incelenmesi

Year 2022, , 389 - 398, 10.11.2021
https://doi.org/10.17341/gazimmfd.878229

Abstract

Bu çalışmada, farklı özgül yüzey alanlarına (320, 530 ve 800 m2/g) sahip grafen nanoplakalar (GNP) içeren su bazlı nanoakışkanlar hazırlanmıştır. Kütlece %0,5, 1,0 ve 2,0 GNP içeren su bazlı nanoakışkanlar, ultrason teknolojisi kullanılarak üretilmiştir. Nanoakışkan kararlılığının belirlenmesi amacıyla zeta potansiyel ölçümleri yapılmıştır. Reolojik davranışların incelenmesi için geniş kayma hızı aralığında ve farklı sıcaklıklarda viskozite ölçümleri gerçekleştirilmiştir. Hazırlanan nanoakışkanlarda, nanoplakaların özgül yüzey alanının azalmasıyla beraber kayma incelmesi davranışı gözlemlenmiştir ve tüm nanoakışkanlarda sıcaklık artışı ile viskozite azalmıştır. En yüksek ısıl iletkenlik artışı olan %11, ağırlıkça %1,0 oranında 320 m2/g GNP içeren nanoakışkanlarda, 3-omega yöntemi ile ölçülmüştür. Ayrıca, 800 m2/g özgül yüzey alanına sahip GNP içeren nanoakışkanlarda ısıl iletkenlik değerlerindeki artışın en düşük olduğu tespit edilmiştir.

Supporting Institution

TÜBİTAK

Project Number

117M953

Thanks

Bu çalışma TÜBİTAK tarafından desteklenmiştir (Proje No:117M953).

References

  • 1. Murshed S.M.S., Estellé P., A state of the art review on viscosity of nanofluids, Renew. Sust. Energ. Rev., 76, 1134–1152, 2017. https://doi.org/10.1016/j.rser.2017.03.113.
  • 2. Tawfik M.M., Experimental studies of nanofluid thermal conductivity enhancement and applications: A review, Renew. Sust. Energ. Rev., 75, 1239–1253, 2017. https://doi.org/10.1016/j.rser.2016.11.111.
  • 3. Choi S.U.S. ve Eastman J.A., Enhancing thermal conductivity of fluids with nanoparticles, International mechanical engineering congress and exhibition, San Francisco CA United States, 1995.
  • 4. Sadeghinezhad E., Mehrali M., Saidur R., Mehrali M., Tahan Latibari S., Akhiani A.R., Metselaar H.S.C., A comprehensive review on graphene nanofluids: Recent research, development and applications, Energy Convers. Manag., 111, 466–487, 2016. https://doi.org/10.1016/j.enconman.2016.01.004.
  • 5. Raja M., Vijayan R., Dineshkumar P., Venkatesan M., Review on nanofluids characterization, heat transfer characteristics and applications, Renew. Sust. Energ. Rev., 64, 163–173, 2016. https://doi.org/10.1016/j.rser.2016.05.079.
  • 6. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (5696), 666, 2016. https://doi:10.1126/science.1102896.
  • 7. Singh V., Joung D., Zhai L., Das S., Khondaker S., Seal S., Graphene Based Materials: Past, Present and Future, Mater. Sci. 56 (8), 1178–1271, 2011. https://doi:10.1016/j.pmatsci.2011.03.003.
  • 8. Zhang T., Xue Q., Zhang S., Dong M., Theoretical approaches to graphene and graphene-based materials, Nano Today, 7 (3), 180–200, 2012. https://doi.org/10.1016/j.nantod.2012.04.006.
  • 9. Balaji T., Selvam C., Lal D.M., Harish S., Enhanced heat transport behavior of micro channel heat sink with graphene based nanofluids, Int. Commun. Heat Mass, 117, 104716, 2020. https://doi.org/10.1016/j.icheatmasstransfer.2020.104716.
  • 10. Fuskele V., Sarviya R.M., Recent developments in Nanoparticles Synthesis, Preparation and Stability of Nanofluids, Mater. Today, 4 (2, Part A), 4049–4060, 2017. https://doi.org/10.1016/j.matpr.2017.02.307.
  • 11. Sezer N., Atieh M.A., Koç M., A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids, Powder Technol., 344, 404–431, 2019. https://doi.org/10.1016/j.powtec.2018.12.016.
  • 12. Sharifpur M., Meyer J., Aybar H., Nanofluids; Opportunities and Challenges, 11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2015), Kruger National Park South Africa, 2015.
  • 13. Mukherjee S., Mishra P.C., Chaudhuri P., Stability of Heat Transfer Nanofluids – A Review, ChemBioEng Rev., 5 (5), 312–333, 2018. https://doi:10.1002/cben.201800008.
  • 14. Mehrali M., Sadeghinezhad E., Latibari S.T., Kazi S.N., Mehrali M., Zubir M.N.B.M., Metselaar H.S.C., Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets, Nanoscale Res. Lett., 9 (1), 15, 2014. https://doi:10.1186/1556-276x-9-15.
  • 15. Ilyas S.U., Narahari M., Theng J.T.Y., Pendyala R., Experimental evaluation of dispersion behavior, rheology and thermal analysis of functionalized zinc oxide-paraffin oil nanofluids, J. Mol. Liq., 294, 111613, 2019. https://doi.org/10.1016/j.molliq.2019.111613.
  • 16. Sharma A.K., Tiwari A.K., Dixit A.R., Rheological behaviour of nanofluids: A review, Renew. Sust. Energ. Rev., 53, 779–791, 2016. https://doi.org/10.1016/j.rser.2015.09.033. 17. López L.H., Monzonís L.M., Vicente L.B., Report about industries perspectives on nanofluids market uptake, 2019.
  • 18. Ahmadi A., Ganji D.D., Jafarkazemi F., Analysis of utilizing Graphene nanoplatelets to enhance thermal performance of flat plate solar collectors, Energy Convers. Manag., 126, 1–11, 2016. https://doi.org/10.1016/j.enconman.2016.07.061.
  • 19. Le Ba T., Mahian O., Wongwises S., Szilágyi I.M., Review on the recent progress in the preparation and stability of graphene-based nanofluids, J. Therm. Anal. Calorim., 142 (3), 1145–1172, 2020. https://doi:10.1007/s10973-020-09365-9.
  • 20. Mehrali M., Sadeghinezhad E., Rosen M.A., Tahan Latibari S., Mehrali M., Metselaar H.S.C., Kazi S.N., Effect of specific surface area on convective heat transfer of graphene nanoplatelet aqueous nanofluids. Exp. Therm. Fluid Sci., 68, 100-108, 2015. https://doi.org/10.1016/j.expthermflusci.2015.03.012.
  • 21. Agarwal D.K., Vaidyanathan A., Sunil Kumar S., Experimental investigation on thermal performance of kerosene–graphene nanofluid. Exp. Therm. Fluid Sci., 71, 126-137, 2016. https://doi.org/10.1016/j.expthermflusci.2015.10.028.
  • 22. Turgut A., Sauter C., Chirtoc M., Henry J.F., Tavman S., Tavman I., Pelzl J., AC hot wire measurement of thermophysical properties of nanofluids with 3ω method, Eur. Phys. J. Spec. Top. 153 (1), 349–352, 2008. https://doi:10.1140/epjst/e2008-00459-7.
  • 23. Turgut A., Tavman I., Chirtoc M., Schuchmann H.P., Sauter C., Tavman S., Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids, Int. J. Thermophys., 30 (4), 1213–1226, 2009. https://doi:10.1007/s10765-009-0594-2.
  • 24. Kim D.H., Yun Y.S., Jin H.-J., Difference of dispersion behavior between graphene oxide and oxidized carbon nanotubes in polar organic solvents, Curr. Appl. Phys., 12 (3), 637–642, 2012. https://doi.org/10.1016/j.cap.2011.09.015.
  • 25. Shah J., Ranjan M., Davariya V., Gupta S. K., Sonvane Y., Temperature-dependent thermal conductivity and viscosity of synthesized α-alumina nanofluids, Appl.Nanosci., 7(8), 803-813,2017. https://doi:10.1007/s13204-017-0594-7.
  • 26. Tseng W.J., Wu C.H., Aggregation, rheology and electrophoretic packing structure of aqueous A12O3 nanoparticle suspensions, Acta Mater. 50 (15), 3757–3766, 2002. https://doi.org/10.1016/S1359-6454(02)00142-8.
  • 27. Murshed S.M.S, Tan S.-H., Nguyen N.-T., Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics, J. Phys. D: Appl. Phys., 41 (8), 085502, 2008. https://doi:10.1088/0022-3727/41/8/085502.
  • 28. Timofeeva E.V., Yu W., France D.M., Singh D., Routbort J.L., Nanofluids for heat transfer: an engineering approach, Nanoscale Res. Lett. 6 (1) 182, 2011. https://doi:10.1186/1556-276X-6-182.
  • 29. Özerinç S., Kakaç S., Yazıcıoğlu A.G., Enhanced thermal conductivity of nanofluids: a state-of-the-art review, Microfluid. Nanofluidics, 8 (2), 145–170,2010. https://doi:10.1007/s10404-009-0524-4.
  • 30. Putnam S.A., Cahill D. G., Braun P.V., Ge Z., Shimmin R.G., Thermal conductivity of nanoparticle suspensions, J. Appl. Phys., 99 (8), 084308, 2006. https://doi:10.1063/1.2189933.
  • 31. Xing M., Yu J., Wang R., Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes, Int. J. Heat Mass Transf., 88, 609–616, 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.005.
  • 32. Antoniadis K.D., Tertsinidou G.J., Assael M.J., Wakeham W.J., Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied, Int. J. Thermophys., 37 (8), 78,2016. https://doi:10.1007/s10765-016-2083-8.
  • 33. Ilyas S. U., Ridha S., Abdul Kareem F.A., Dispersion stability and surface tension of SDS-Stabilized saline nanofluids with graphene nanoplatelets, Colloids Surf. A Physicochem. Eng. Asp., 592, 124584, 2020. https://doi.org/10.1016/j.colsurfa.2020.124584.

Experimental investigation of thermophysical and rheological properties of water-based nanofluids containing graphene nanoplatelets with different specific surface areas

Year 2022, , 389 - 398, 10.11.2021
https://doi.org/10.17341/gazimmfd.878229

Abstract

Project Number

117M953

References

  • 1. Murshed S.M.S., Estellé P., A state of the art review on viscosity of nanofluids, Renew. Sust. Energ. Rev., 76, 1134–1152, 2017. https://doi.org/10.1016/j.rser.2017.03.113.
  • 2. Tawfik M.M., Experimental studies of nanofluid thermal conductivity enhancement and applications: A review, Renew. Sust. Energ. Rev., 75, 1239–1253, 2017. https://doi.org/10.1016/j.rser.2016.11.111.
  • 3. Choi S.U.S. ve Eastman J.A., Enhancing thermal conductivity of fluids with nanoparticles, International mechanical engineering congress and exhibition, San Francisco CA United States, 1995.
  • 4. Sadeghinezhad E., Mehrali M., Saidur R., Mehrali M., Tahan Latibari S., Akhiani A.R., Metselaar H.S.C., A comprehensive review on graphene nanofluids: Recent research, development and applications, Energy Convers. Manag., 111, 466–487, 2016. https://doi.org/10.1016/j.enconman.2016.01.004.
  • 5. Raja M., Vijayan R., Dineshkumar P., Venkatesan M., Review on nanofluids characterization, heat transfer characteristics and applications, Renew. Sust. Energ. Rev., 64, 163–173, 2016. https://doi.org/10.1016/j.rser.2016.05.079.
  • 6. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (5696), 666, 2016. https://doi:10.1126/science.1102896.
  • 7. Singh V., Joung D., Zhai L., Das S., Khondaker S., Seal S., Graphene Based Materials: Past, Present and Future, Mater. Sci. 56 (8), 1178–1271, 2011. https://doi:10.1016/j.pmatsci.2011.03.003.
  • 8. Zhang T., Xue Q., Zhang S., Dong M., Theoretical approaches to graphene and graphene-based materials, Nano Today, 7 (3), 180–200, 2012. https://doi.org/10.1016/j.nantod.2012.04.006.
  • 9. Balaji T., Selvam C., Lal D.M., Harish S., Enhanced heat transport behavior of micro channel heat sink with graphene based nanofluids, Int. Commun. Heat Mass, 117, 104716, 2020. https://doi.org/10.1016/j.icheatmasstransfer.2020.104716.
  • 10. Fuskele V., Sarviya R.M., Recent developments in Nanoparticles Synthesis, Preparation and Stability of Nanofluids, Mater. Today, 4 (2, Part A), 4049–4060, 2017. https://doi.org/10.1016/j.matpr.2017.02.307.
  • 11. Sezer N., Atieh M.A., Koç M., A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids, Powder Technol., 344, 404–431, 2019. https://doi.org/10.1016/j.powtec.2018.12.016.
  • 12. Sharifpur M., Meyer J., Aybar H., Nanofluids; Opportunities and Challenges, 11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2015), Kruger National Park South Africa, 2015.
  • 13. Mukherjee S., Mishra P.C., Chaudhuri P., Stability of Heat Transfer Nanofluids – A Review, ChemBioEng Rev., 5 (5), 312–333, 2018. https://doi:10.1002/cben.201800008.
  • 14. Mehrali M., Sadeghinezhad E., Latibari S.T., Kazi S.N., Mehrali M., Zubir M.N.B.M., Metselaar H.S.C., Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets, Nanoscale Res. Lett., 9 (1), 15, 2014. https://doi:10.1186/1556-276x-9-15.
  • 15. Ilyas S.U., Narahari M., Theng J.T.Y., Pendyala R., Experimental evaluation of dispersion behavior, rheology and thermal analysis of functionalized zinc oxide-paraffin oil nanofluids, J. Mol. Liq., 294, 111613, 2019. https://doi.org/10.1016/j.molliq.2019.111613.
  • 16. Sharma A.K., Tiwari A.K., Dixit A.R., Rheological behaviour of nanofluids: A review, Renew. Sust. Energ. Rev., 53, 779–791, 2016. https://doi.org/10.1016/j.rser.2015.09.033. 17. López L.H., Monzonís L.M., Vicente L.B., Report about industries perspectives on nanofluids market uptake, 2019.
  • 18. Ahmadi A., Ganji D.D., Jafarkazemi F., Analysis of utilizing Graphene nanoplatelets to enhance thermal performance of flat plate solar collectors, Energy Convers. Manag., 126, 1–11, 2016. https://doi.org/10.1016/j.enconman.2016.07.061.
  • 19. Le Ba T., Mahian O., Wongwises S., Szilágyi I.M., Review on the recent progress in the preparation and stability of graphene-based nanofluids, J. Therm. Anal. Calorim., 142 (3), 1145–1172, 2020. https://doi:10.1007/s10973-020-09365-9.
  • 20. Mehrali M., Sadeghinezhad E., Rosen M.A., Tahan Latibari S., Mehrali M., Metselaar H.S.C., Kazi S.N., Effect of specific surface area on convective heat transfer of graphene nanoplatelet aqueous nanofluids. Exp. Therm. Fluid Sci., 68, 100-108, 2015. https://doi.org/10.1016/j.expthermflusci.2015.03.012.
  • 21. Agarwal D.K., Vaidyanathan A., Sunil Kumar S., Experimental investigation on thermal performance of kerosene–graphene nanofluid. Exp. Therm. Fluid Sci., 71, 126-137, 2016. https://doi.org/10.1016/j.expthermflusci.2015.10.028.
  • 22. Turgut A., Sauter C., Chirtoc M., Henry J.F., Tavman S., Tavman I., Pelzl J., AC hot wire measurement of thermophysical properties of nanofluids with 3ω method, Eur. Phys. J. Spec. Top. 153 (1), 349–352, 2008. https://doi:10.1140/epjst/e2008-00459-7.
  • 23. Turgut A., Tavman I., Chirtoc M., Schuchmann H.P., Sauter C., Tavman S., Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids, Int. J. Thermophys., 30 (4), 1213–1226, 2009. https://doi:10.1007/s10765-009-0594-2.
  • 24. Kim D.H., Yun Y.S., Jin H.-J., Difference of dispersion behavior between graphene oxide and oxidized carbon nanotubes in polar organic solvents, Curr. Appl. Phys., 12 (3), 637–642, 2012. https://doi.org/10.1016/j.cap.2011.09.015.
  • 25. Shah J., Ranjan M., Davariya V., Gupta S. K., Sonvane Y., Temperature-dependent thermal conductivity and viscosity of synthesized α-alumina nanofluids, Appl.Nanosci., 7(8), 803-813,2017. https://doi:10.1007/s13204-017-0594-7.
  • 26. Tseng W.J., Wu C.H., Aggregation, rheology and electrophoretic packing structure of aqueous A12O3 nanoparticle suspensions, Acta Mater. 50 (15), 3757–3766, 2002. https://doi.org/10.1016/S1359-6454(02)00142-8.
  • 27. Murshed S.M.S, Tan S.-H., Nguyen N.-T., Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics, J. Phys. D: Appl. Phys., 41 (8), 085502, 2008. https://doi:10.1088/0022-3727/41/8/085502.
  • 28. Timofeeva E.V., Yu W., France D.M., Singh D., Routbort J.L., Nanofluids for heat transfer: an engineering approach, Nanoscale Res. Lett. 6 (1) 182, 2011. https://doi:10.1186/1556-276X-6-182.
  • 29. Özerinç S., Kakaç S., Yazıcıoğlu A.G., Enhanced thermal conductivity of nanofluids: a state-of-the-art review, Microfluid. Nanofluidics, 8 (2), 145–170,2010. https://doi:10.1007/s10404-009-0524-4.
  • 30. Putnam S.A., Cahill D. G., Braun P.V., Ge Z., Shimmin R.G., Thermal conductivity of nanoparticle suspensions, J. Appl. Phys., 99 (8), 084308, 2006. https://doi:10.1063/1.2189933.
  • 31. Xing M., Yu J., Wang R., Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes, Int. J. Heat Mass Transf., 88, 609–616, 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.005.
  • 32. Antoniadis K.D., Tertsinidou G.J., Assael M.J., Wakeham W.J., Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied, Int. J. Thermophys., 37 (8), 78,2016. https://doi:10.1007/s10765-016-2083-8.
  • 33. Ilyas S. U., Ridha S., Abdul Kareem F.A., Dispersion stability and surface tension of SDS-Stabilized saline nanofluids with graphene nanoplatelets, Colloids Surf. A Physicochem. Eng. Asp., 592, 124584, 2020. https://doi.org/10.1016/j.colsurfa.2020.124584.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Tuğçe Fidan This is me 0000-0001-9963-6436

Elif Alyamaç Seydibeyoğlu 0000-0002-6438-0511

Project Number 117M953
Publication Date November 10, 2021
Submission Date February 11, 2021
Acceptance Date June 13, 2021
Published in Issue Year 2022

Cite

APA Fidan, T., & Alyamaç Seydibeyoğlu, E. (2021). Farklı özgül yüzey alanlarına sahip grafen nanoplakalar içeren su bazlı nanoakışkanların termofiziksel ve reolojik özelliklerinin deneysel incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(1), 389-398. https://doi.org/10.17341/gazimmfd.878229
AMA Fidan T, Alyamaç Seydibeyoğlu E. Farklı özgül yüzey alanlarına sahip grafen nanoplakalar içeren su bazlı nanoakışkanların termofiziksel ve reolojik özelliklerinin deneysel incelenmesi. GUMMFD. November 2021;37(1):389-398. doi:10.17341/gazimmfd.878229
Chicago Fidan, Tuğçe, and Elif Alyamaç Seydibeyoğlu. “Farklı özgül yüzey alanlarına Sahip Grafen Nanoplakalar içeren Su Bazlı nanoakışkanların Termofiziksel Ve Reolojik özelliklerinin Deneysel Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no. 1 (November 2021): 389-98. https://doi.org/10.17341/gazimmfd.878229.
EndNote Fidan T, Alyamaç Seydibeyoğlu E (November 1, 2021) Farklı özgül yüzey alanlarına sahip grafen nanoplakalar içeren su bazlı nanoakışkanların termofiziksel ve reolojik özelliklerinin deneysel incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 1 389–398.
IEEE T. Fidan and E. Alyamaç Seydibeyoğlu, “Farklı özgül yüzey alanlarına sahip grafen nanoplakalar içeren su bazlı nanoakışkanların termofiziksel ve reolojik özelliklerinin deneysel incelenmesi”, GUMMFD, vol. 37, no. 1, pp. 389–398, 2021, doi: 10.17341/gazimmfd.878229.
ISNAD Fidan, Tuğçe - Alyamaç Seydibeyoğlu, Elif. “Farklı özgül yüzey alanlarına Sahip Grafen Nanoplakalar içeren Su Bazlı nanoakışkanların Termofiziksel Ve Reolojik özelliklerinin Deneysel Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/1 (November 2021), 389-398. https://doi.org/10.17341/gazimmfd.878229.
JAMA Fidan T, Alyamaç Seydibeyoğlu E. Farklı özgül yüzey alanlarına sahip grafen nanoplakalar içeren su bazlı nanoakışkanların termofiziksel ve reolojik özelliklerinin deneysel incelenmesi. GUMMFD. 2021;37:389–398.
MLA Fidan, Tuğçe and Elif Alyamaç Seydibeyoğlu. “Farklı özgül yüzey alanlarına Sahip Grafen Nanoplakalar içeren Su Bazlı nanoakışkanların Termofiziksel Ve Reolojik özelliklerinin Deneysel Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 37, no. 1, 2021, pp. 389-98, doi:10.17341/gazimmfd.878229.
Vancouver Fidan T, Alyamaç Seydibeyoğlu E. Farklı özgül yüzey alanlarına sahip grafen nanoplakalar içeren su bazlı nanoakışkanların termofiziksel ve reolojik özelliklerinin deneysel incelenmesi. GUMMFD. 2021;37(1):389-98.