Research Article
BibTex RIS Cite

Investigation of the effects of curtain wall angle on energy consumption in buildings

Year 2024, Volume: 39 Issue: 1, 315 - 326, 21.08.2023
https://doi.org/10.17341/gazimmfd.1089497

Abstract

References

  • 1- Fasi M.A., Budaiwi I.M., Energy performance of windows in office buildings considering daylight integration and visual comfort in hot climates, Energy Building, 108, 307-316, 2015.
  • 2- Alghoul S.K., H.G. Rijabo, Mashena M.E., Energy consumption in buildings: A correlation for the influence of window to wall ratio and window orientation in Tripoli, Libya, Journal of Building Engineering, 11, 82-86, 2017.
  • 3- International Energy Agency, Energy Technology Perspectives 2016, OECD/IEA, Paris, 2016.
  • 4- Ertürk M., Keçebaş A., Prediction of the effect of insulation thickness and emission on heating energy requirements of cities in the future. Sustainable Cities and Society, 75, 103270, 2021.
  • 5- Kandar, M.Z., Nimlyat, P.S., Abdullahi, M.G., Dodo, Y.A., Influence of inclined wall self-shading strategy on office building heat gain and energy performance in hot humid climate of Malaysia. Heliyon, 5 (7), 1-10, 2019.
  • 6- Amaral A.R, Rodrigues E., Gaspar A.R., Gomes A., A thermal performance parametric study of window type, orientation, size and shadowing effect, Sustainable Cities and Society, 26, 456-465, 2016.
  • 7- Wen L., Hiyama K., Koganei M., A method for creating maps of recommended window-to-wall ratios to assign appropriate default values in design performance modeling: A case study of a typical office building in Japan, Energy and Buildings, 145, 304-317, 2017.
  • 8- Abanda F.H., Byers L., An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling), Energy, 97, 517-527, 2016.
  • 9- Echenagucia T.M., Capozzoli A., Cascone Y., Sassone M., The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting Energy performance analysis, Applied Energy, 154, 577-591, 2015.
  • 10- Liao, W., Wen, C., Luo, Y., Peng, J., Li, N., Influence of different building transparent envelopes on energy consumption and thermal environment of radiant ceiling heating and cooling systems. Energy and Buildings, 255, 1-17, 2022.
  • 11- Ertürk, M., Pul, H., Daşdemir, A., Coşkun, C., Oktay, Z., Pencerelerde birbirine paralel farklı tabaka halinde hava boşluğunun enerji tüketimine etkisinin araştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 4 (2) , 646-654, 2016.
  • 12- Qu, J., Song, J., Qin, J., Song, Z., Zhang, W., Shi, Y., Zhang, T., Zhang, H., Zhang, R., He, Z., Xue, X., Transparent thermal insulation coatings for energy efficient glass windows and curtain walls, Energy and Buildings, 77, 1-10, 2014.
  • 13- Archdaily. Unicredit Tiriac Bank Binası. https://www.archdaily.com/261774/unicredit-tiriac-bank-hq-westfourth-architecture. Erişim tarihi Kasım 12, 2021.
  • 14- Archdaily. The Leadenhall Binası. https://www.archdaily.com/547041/the-leadenhall-building-rogers-stirk-harbour-partners. Erişim tarihi Aralık 01, 2021.
  • 15- Archdaily. Bolzano Yönetim Binası. https://www.archdaily.com/506227/bozen-waste-to-energy-plant-cl-and-aa-architects. Erişim tarihi Kasım 09, 2021.
  • 16- Archdaily. West Taihu İş Merkezi. https://www.archdaily.com/487639/west-taihu-international-business-plaza-lab-architecture-studio-siadr. Erişim tarihi Aralık 10, 2021.
  • 17- Archdaily. Freiburg Kütüphane Binası. https://www.archdaily.com/783418/library-in-freiburg-degelo-architekten-bsa-sia-ag-plus-ittenbrechbuhl-ag-basel. Erişim tarihi Kasım 12, 2021.
  • 18- Arkiv. Paragon Tower Binası. http://www.arkiv.com.tr/proje/paragon-tower/3806. Erişim tarihi Kasım 12, 2021.
  • 19- Chan A.L.S., Chow T.T., Thermal performance of air-conditioned office buildings constructed with inclined walls in different climates in China, Applied Energy, 114, 45-57, 2014.
  • 20- Arıcı M., Bilgin F., Nižetić S., Karabay H., PCM integrated to external building walls: An optimization study on maximum activation of latent heat, Applied Thermal Engineering, 165, 114560, 2020.
  • 21- Baker N.M.W., Taleb A.M., The Application of the inclined window method for Passive cooling in buildings, Architectural Science Review, 45(1), 51-55, 2002.
  • 22- Nielsen T.R., Duer K., Svendsen S., Energy performance of glazings and windows, Solar Energy, 69(6), 137-143, 2001.
  • 23- Hachem C., Athienitis A., Fazio P., Investigation of solar potential of housing units in different neighborhood designs, Energy and Buildings, 43(9), 2262-73, 2011
  • 24-. Ko W.H., Tilted glazing: angle-dependence of direct solar heat gain and form-refining of complex facades, Master of Building Science, University of Southern California, Los Angeles, 2012.
  • 25- Capeluto G., Energy performance of the self-shading building envelope, Energy and Buildings, 35(3), 327-336, 2003.
  • 26- Valladares-Rendón L.G., Schmid G., Lo S. L., Review on energy savings by solar control techniques and optimal building orientation for the strategic placement of façade shading systems, Energy and Buildings, 140, 458-479, 2017.
  • 27- Zerefos S.C., Tessas C.A., Kotsiopoulos A.M., Founda D., Kokkini A., The role of building form in energy consumption: The case of a prismatic building in Athens, Energy and Buildings, 48, 97-102, 2012.
  • 28- Zhang L., Zhang L., Wang Y., Shape optimization of free-form buildings based on solar radiation gain and space efficiency using a multi-objective genetic algorithm in the severe cold zones of China, Solar Energy, 132, 38-50, 2016.
  • 29- Çay, Y., Ertürk, M., Aylık ve sezonluk yirmi dört saat ısıtma derece saat değerlerinin Sakarya için tahmin edilmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 9(2), 616-627, 2021.
  • 30- T.C. Resmi Gazete, Binalarda Enerji Performansı Ulusal Hesaplama Yöntemine Dair Tebliğ. (30227), 01.10.2017.29.
  • 31- EN ISO 13790, Energy Performance of Buildings - Calculation of Energy Use for Space Heating and Cooling, International Organization for Standardization (ISO), Cenevre, Şubat 2008.
  • 32- McQiston, F.C., Parker, J.D., ve Spitler, J., Heating, Ventilating, and Air Conditioning Analysis and Design, Six Edition, John Wiley Press, USA, 2005.
  • 33- Maçka Kalfa, S., Türkiye İklim Bölgelerinde Konut Binaları için Isıtma ve Soğutma Yüklerinin Belirlenmesinde Kullanılabilecek Bir Yaklaşım, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, 2014.
  • 34- Ganiç, N., Yılmaz, Z. ve Corgnati, S., Enerji Performansı Gereksinimlerinin Optimum Maliyet Düzeyinin Türkiye’deki Örnek Bir Ofis Binasında Yapılan İyileştirmeler İçin Hesaplanması, 11. Ulusal Tesisat Mühendisliği Kongresi, Nisan 2013, İzmir, 889-904.
  • 35- Sümer Haydaraslan, K., Binaların Tasarım Stratejilerinin Simülasyon Optimizasyonuna Dayalı Olarak Değerlendirilmesi: Çok Katlı Konut Yapıları TOKİ Örneği, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, 2021.
  • 36- European Commission, Commission Delegated Regulation (EU) No.244/2012 of 16 January 2012 Supplementing Directive 2010/31/EU of the European Parliament and of the council on the energy performance of buildings by establishing a comparative methodology framework for calculating cost- optimal levels of minimum energy performance requirements for buildings and building elements, Official Journal of the European Union, 2012.
  • 37- EN 15603, Energy Performance of Buildings, Overall Energy Use and Definition of Energy Ratings, European Committee for Standardization (CEN), Brüksel, 2008.
  • 38- Ashrafian T., Yilmaz A.Z., Corgnati S.P., Moazzen N., Methodology to define cost-optimal level of architectural measures for energy efficient retrofits of existing detached residential buildings in Turkey, Energy and Buildings, 120, 58-77, 2016.
  • 39- Çevre Dostu Yeşil Binalar Derneği (ÇEDBİK). Konut Sertifika Kılavuzu. www.cedbik.org. Erişim tarihi Temmuz 10, 2021.
  • 40- Strand, R.K., Pedersen, C.O. ve Crawley, D.B., Modularization and Simulation Techniques for Heat Balance Based Energy and Load Calculation Programs: The Experience of The Ashrae Loads Toolkit and Energyplus, Seventh International IBPSA Conference, Ağustos 2001, Brezilya, 43-50.
  • 41- Haydaraslan, E., Çuhadaroğlu, B., Yaşar, Y., Kat ısıtmasında yüzer döşeme ve faz değiştiren malzeme kullanımının enerji verimliliğine ve konfor koşullarına etkisi, Mühendis ve Makine, 61, 180-197, 2020.
  • 42- Szigeti F., Gerald D., What is performance based building, performance based building: conceptual framework, Performance Based Building Thematic Network Funded by EU 5th Framework Research Programme, Hollanda, 9-18, 2005.
  • 43- Kalaycıoğlu E., Yılmaz A.Z, A new approach for the application of nearly zero energy concept at district level to reach EPBD recast requirements through a case study in Turkey, Energy and Buildings, 152, 680-700, 2017.
  • 44- Schüler N., Mastrucci A., Bertrand A., Page J., Marechal F., Heat demand estimation for different building types at regional scale considering building parameters and urban topography, Energy Procedia, 78, 3403-09, 2015.
  • 45- Monsalvete P., Robinson D., Eicker U., Dynamic simulation methodologies for urban energy demand, Energy Procedia, 78, 3360-65, 2015.
  • 46- Al-Sallal K. A., Solar access/shading and building form: geometrical study of the traditional housing cluster in Sana'a, Renewable Energy, 8, 331-334, 1996.
  • 47- Chan A.L.S., Energy and environmental performance of building façades integrated with phase change material in subtropical Hong Kong, Energy and Buildings, 43, 2947-55, 2011.
  • 48- Alam M., Jamil H., Sanjayan J., Wilson J., Energy saving potential of phase change materials in major Australian cities, Energy and Buildings, 78, 192-201, 2014.
  • 49- Kuznik F., Virgone J., Experimental assessment of a phase change material for wall building use, Applied Energy, 86, 2038-46, 2009.
  • 50- EPBD recast 2010, Directive 2010/31/EU of the European Parliament and of Council of 19 May 2010 on the energy performance of buildings (recast), EU Commission, Official Journal of the European Union, 2010.

Binalarda giydirme cephe açısının enerji tüketimine etkilerinin incelenmesi

Year 2024, Volume: 39 Issue: 1, 315 - 326, 21.08.2023
https://doi.org/10.17341/gazimmfd.1089497

Abstract

Günümüzde giydirme cam cepheler yaygın olarak kullanılmaktadır. Bu sistemlerin binalara eğimli bir şekilde uygulandığı çok sayıda örnek mevcuttur. Mimari tasarım aşamasında binanın enerji tüketim değerleri dikkate alınmadan verilen bu karar, kullanıcıların konforunun olumsuz etkilenmesine ve binaların enerji tüketimlerinin artmasına neden olmaktadır. Bu çalışmada cam giydirme cephenin zemin ile yaptığı açı değişiminin enerji tüketim değerlerine etkileri araştırılmıştır. Çalışma için DesignBuilder enerji simülasyon programında hazırlanan bir bina modelinin giydirme cam olan cephesine farklı açılar verilmiş ve oluşturulan her modelin farklı yönlere göre enerji tüketimleri hesaplanmıştır. Yapılan çalışmada cam giydirme cephenin açısı ile yönünün, binanın güneş enerjisi kazancı, ısıtma ve soğutma yükleri ile birincil enerji tüketimi değerlerini etkilediği görülmüştür. Çalışmanın sonucunda cam giydirme cephe açısı azaldıkça güneş enerjisi kazancı arttığına, cam giydirme cephe açısı arttıkça ise ısıtma yüklerinin arttığına ulaşılmıştır. Cam giydirme cephe açısı arttıkça soğutma yükleri azalmıştır. Çalışma ile eğimli cephelerin güneş enerjisi kazanımı düz cepheye kıyasla %1 ile %52 arasında değiştirdiğine, ayrıca binanın soğutma enerjisinde ve birincil enerji tüketiminde %1 ile %23 arasında tasarruf edilebileceğine ulaşılmıştır. Yapılan çalışma ile cam giydirme cepheler tasarım aşamasında iken zeminle yaptıkları açının değiştirilmesi sayesinde binanın enerji tasarrufu sağlanması açısından referans bir kaynak oluşturulmuştur.

References

  • 1- Fasi M.A., Budaiwi I.M., Energy performance of windows in office buildings considering daylight integration and visual comfort in hot climates, Energy Building, 108, 307-316, 2015.
  • 2- Alghoul S.K., H.G. Rijabo, Mashena M.E., Energy consumption in buildings: A correlation for the influence of window to wall ratio and window orientation in Tripoli, Libya, Journal of Building Engineering, 11, 82-86, 2017.
  • 3- International Energy Agency, Energy Technology Perspectives 2016, OECD/IEA, Paris, 2016.
  • 4- Ertürk M., Keçebaş A., Prediction of the effect of insulation thickness and emission on heating energy requirements of cities in the future. Sustainable Cities and Society, 75, 103270, 2021.
  • 5- Kandar, M.Z., Nimlyat, P.S., Abdullahi, M.G., Dodo, Y.A., Influence of inclined wall self-shading strategy on office building heat gain and energy performance in hot humid climate of Malaysia. Heliyon, 5 (7), 1-10, 2019.
  • 6- Amaral A.R, Rodrigues E., Gaspar A.R., Gomes A., A thermal performance parametric study of window type, orientation, size and shadowing effect, Sustainable Cities and Society, 26, 456-465, 2016.
  • 7- Wen L., Hiyama K., Koganei M., A method for creating maps of recommended window-to-wall ratios to assign appropriate default values in design performance modeling: A case study of a typical office building in Japan, Energy and Buildings, 145, 304-317, 2017.
  • 8- Abanda F.H., Byers L., An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling), Energy, 97, 517-527, 2016.
  • 9- Echenagucia T.M., Capozzoli A., Cascone Y., Sassone M., The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting Energy performance analysis, Applied Energy, 154, 577-591, 2015.
  • 10- Liao, W., Wen, C., Luo, Y., Peng, J., Li, N., Influence of different building transparent envelopes on energy consumption and thermal environment of radiant ceiling heating and cooling systems. Energy and Buildings, 255, 1-17, 2022.
  • 11- Ertürk, M., Pul, H., Daşdemir, A., Coşkun, C., Oktay, Z., Pencerelerde birbirine paralel farklı tabaka halinde hava boşluğunun enerji tüketimine etkisinin araştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 4 (2) , 646-654, 2016.
  • 12- Qu, J., Song, J., Qin, J., Song, Z., Zhang, W., Shi, Y., Zhang, T., Zhang, H., Zhang, R., He, Z., Xue, X., Transparent thermal insulation coatings for energy efficient glass windows and curtain walls, Energy and Buildings, 77, 1-10, 2014.
  • 13- Archdaily. Unicredit Tiriac Bank Binası. https://www.archdaily.com/261774/unicredit-tiriac-bank-hq-westfourth-architecture. Erişim tarihi Kasım 12, 2021.
  • 14- Archdaily. The Leadenhall Binası. https://www.archdaily.com/547041/the-leadenhall-building-rogers-stirk-harbour-partners. Erişim tarihi Aralık 01, 2021.
  • 15- Archdaily. Bolzano Yönetim Binası. https://www.archdaily.com/506227/bozen-waste-to-energy-plant-cl-and-aa-architects. Erişim tarihi Kasım 09, 2021.
  • 16- Archdaily. West Taihu İş Merkezi. https://www.archdaily.com/487639/west-taihu-international-business-plaza-lab-architecture-studio-siadr. Erişim tarihi Aralık 10, 2021.
  • 17- Archdaily. Freiburg Kütüphane Binası. https://www.archdaily.com/783418/library-in-freiburg-degelo-architekten-bsa-sia-ag-plus-ittenbrechbuhl-ag-basel. Erişim tarihi Kasım 12, 2021.
  • 18- Arkiv. Paragon Tower Binası. http://www.arkiv.com.tr/proje/paragon-tower/3806. Erişim tarihi Kasım 12, 2021.
  • 19- Chan A.L.S., Chow T.T., Thermal performance of air-conditioned office buildings constructed with inclined walls in different climates in China, Applied Energy, 114, 45-57, 2014.
  • 20- Arıcı M., Bilgin F., Nižetić S., Karabay H., PCM integrated to external building walls: An optimization study on maximum activation of latent heat, Applied Thermal Engineering, 165, 114560, 2020.
  • 21- Baker N.M.W., Taleb A.M., The Application of the inclined window method for Passive cooling in buildings, Architectural Science Review, 45(1), 51-55, 2002.
  • 22- Nielsen T.R., Duer K., Svendsen S., Energy performance of glazings and windows, Solar Energy, 69(6), 137-143, 2001.
  • 23- Hachem C., Athienitis A., Fazio P., Investigation of solar potential of housing units in different neighborhood designs, Energy and Buildings, 43(9), 2262-73, 2011
  • 24-. Ko W.H., Tilted glazing: angle-dependence of direct solar heat gain and form-refining of complex facades, Master of Building Science, University of Southern California, Los Angeles, 2012.
  • 25- Capeluto G., Energy performance of the self-shading building envelope, Energy and Buildings, 35(3), 327-336, 2003.
  • 26- Valladares-Rendón L.G., Schmid G., Lo S. L., Review on energy savings by solar control techniques and optimal building orientation for the strategic placement of façade shading systems, Energy and Buildings, 140, 458-479, 2017.
  • 27- Zerefos S.C., Tessas C.A., Kotsiopoulos A.M., Founda D., Kokkini A., The role of building form in energy consumption: The case of a prismatic building in Athens, Energy and Buildings, 48, 97-102, 2012.
  • 28- Zhang L., Zhang L., Wang Y., Shape optimization of free-form buildings based on solar radiation gain and space efficiency using a multi-objective genetic algorithm in the severe cold zones of China, Solar Energy, 132, 38-50, 2016.
  • 29- Çay, Y., Ertürk, M., Aylık ve sezonluk yirmi dört saat ısıtma derece saat değerlerinin Sakarya için tahmin edilmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 9(2), 616-627, 2021.
  • 30- T.C. Resmi Gazete, Binalarda Enerji Performansı Ulusal Hesaplama Yöntemine Dair Tebliğ. (30227), 01.10.2017.29.
  • 31- EN ISO 13790, Energy Performance of Buildings - Calculation of Energy Use for Space Heating and Cooling, International Organization for Standardization (ISO), Cenevre, Şubat 2008.
  • 32- McQiston, F.C., Parker, J.D., ve Spitler, J., Heating, Ventilating, and Air Conditioning Analysis and Design, Six Edition, John Wiley Press, USA, 2005.
  • 33- Maçka Kalfa, S., Türkiye İklim Bölgelerinde Konut Binaları için Isıtma ve Soğutma Yüklerinin Belirlenmesinde Kullanılabilecek Bir Yaklaşım, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, 2014.
  • 34- Ganiç, N., Yılmaz, Z. ve Corgnati, S., Enerji Performansı Gereksinimlerinin Optimum Maliyet Düzeyinin Türkiye’deki Örnek Bir Ofis Binasında Yapılan İyileştirmeler İçin Hesaplanması, 11. Ulusal Tesisat Mühendisliği Kongresi, Nisan 2013, İzmir, 889-904.
  • 35- Sümer Haydaraslan, K., Binaların Tasarım Stratejilerinin Simülasyon Optimizasyonuna Dayalı Olarak Değerlendirilmesi: Çok Katlı Konut Yapıları TOKİ Örneği, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, 2021.
  • 36- European Commission, Commission Delegated Regulation (EU) No.244/2012 of 16 January 2012 Supplementing Directive 2010/31/EU of the European Parliament and of the council on the energy performance of buildings by establishing a comparative methodology framework for calculating cost- optimal levels of minimum energy performance requirements for buildings and building elements, Official Journal of the European Union, 2012.
  • 37- EN 15603, Energy Performance of Buildings, Overall Energy Use and Definition of Energy Ratings, European Committee for Standardization (CEN), Brüksel, 2008.
  • 38- Ashrafian T., Yilmaz A.Z., Corgnati S.P., Moazzen N., Methodology to define cost-optimal level of architectural measures for energy efficient retrofits of existing detached residential buildings in Turkey, Energy and Buildings, 120, 58-77, 2016.
  • 39- Çevre Dostu Yeşil Binalar Derneği (ÇEDBİK). Konut Sertifika Kılavuzu. www.cedbik.org. Erişim tarihi Temmuz 10, 2021.
  • 40- Strand, R.K., Pedersen, C.O. ve Crawley, D.B., Modularization and Simulation Techniques for Heat Balance Based Energy and Load Calculation Programs: The Experience of The Ashrae Loads Toolkit and Energyplus, Seventh International IBPSA Conference, Ağustos 2001, Brezilya, 43-50.
  • 41- Haydaraslan, E., Çuhadaroğlu, B., Yaşar, Y., Kat ısıtmasında yüzer döşeme ve faz değiştiren malzeme kullanımının enerji verimliliğine ve konfor koşullarına etkisi, Mühendis ve Makine, 61, 180-197, 2020.
  • 42- Szigeti F., Gerald D., What is performance based building, performance based building: conceptual framework, Performance Based Building Thematic Network Funded by EU 5th Framework Research Programme, Hollanda, 9-18, 2005.
  • 43- Kalaycıoğlu E., Yılmaz A.Z, A new approach for the application of nearly zero energy concept at district level to reach EPBD recast requirements through a case study in Turkey, Energy and Buildings, 152, 680-700, 2017.
  • 44- Schüler N., Mastrucci A., Bertrand A., Page J., Marechal F., Heat demand estimation for different building types at regional scale considering building parameters and urban topography, Energy Procedia, 78, 3403-09, 2015.
  • 45- Monsalvete P., Robinson D., Eicker U., Dynamic simulation methodologies for urban energy demand, Energy Procedia, 78, 3360-65, 2015.
  • 46- Al-Sallal K. A., Solar access/shading and building form: geometrical study of the traditional housing cluster in Sana'a, Renewable Energy, 8, 331-334, 1996.
  • 47- Chan A.L.S., Energy and environmental performance of building façades integrated with phase change material in subtropical Hong Kong, Energy and Buildings, 43, 2947-55, 2011.
  • 48- Alam M., Jamil H., Sanjayan J., Wilson J., Energy saving potential of phase change materials in major Australian cities, Energy and Buildings, 78, 192-201, 2014.
  • 49- Kuznik F., Virgone J., Experimental assessment of a phase change material for wall building use, Applied Energy, 86, 2038-46, 2009.
  • 50- EPBD recast 2010, Directive 2010/31/EU of the European Parliament and of Council of 19 May 2010 on the energy performance of buildings (recast), EU Commission, Official Journal of the European Union, 2010.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Architecture
Journal Section Makaleler
Authors

Kübra Sümer Haydaraslan 0000-0003-0663-6141

Neşe Dikmen 0000-0001-8228-7954

Early Pub Date June 15, 2023
Publication Date August 21, 2023
Submission Date March 17, 2022
Acceptance Date February 14, 2023
Published in Issue Year 2024 Volume: 39 Issue: 1

Cite

APA Sümer Haydaraslan, K., & Dikmen, N. (2023). Binalarda giydirme cephe açısının enerji tüketimine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(1), 315-326. https://doi.org/10.17341/gazimmfd.1089497
AMA Sümer Haydaraslan K, Dikmen N. Binalarda giydirme cephe açısının enerji tüketimine etkilerinin incelenmesi. GUMMFD. August 2023;39(1):315-326. doi:10.17341/gazimmfd.1089497
Chicago Sümer Haydaraslan, Kübra, and Neşe Dikmen. “Binalarda Giydirme Cephe açısının Enerji tüketimine Etkilerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 1 (August 2023): 315-26. https://doi.org/10.17341/gazimmfd.1089497.
EndNote Sümer Haydaraslan K, Dikmen N (August 1, 2023) Binalarda giydirme cephe açısının enerji tüketimine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 1 315–326.
IEEE K. Sümer Haydaraslan and N. Dikmen, “Binalarda giydirme cephe açısının enerji tüketimine etkilerinin incelenmesi”, GUMMFD, vol. 39, no. 1, pp. 315–326, 2023, doi: 10.17341/gazimmfd.1089497.
ISNAD Sümer Haydaraslan, Kübra - Dikmen, Neşe. “Binalarda Giydirme Cephe açısının Enerji tüketimine Etkilerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/1 (August 2023), 315-326. https://doi.org/10.17341/gazimmfd.1089497.
JAMA Sümer Haydaraslan K, Dikmen N. Binalarda giydirme cephe açısının enerji tüketimine etkilerinin incelenmesi. GUMMFD. 2023;39:315–326.
MLA Sümer Haydaraslan, Kübra and Neşe Dikmen. “Binalarda Giydirme Cephe açısının Enerji tüketimine Etkilerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 1, 2023, pp. 315-26, doi:10.17341/gazimmfd.1089497.
Vancouver Sümer Haydaraslan K, Dikmen N. Binalarda giydirme cephe açısının enerji tüketimine etkilerinin incelenmesi. GUMMFD. 2023;39(1):315-26.