Research Article
BibTex RIS Cite

Doygun olmayan zeminler için bağlaşık elasto-plastik formülasyona dayalı hidrolik histerezisi dikkate alan hidro-mekanik bir bünye modeli

Year 2024, Volume: 39 Issue: 3, 1387 - 1400
https://doi.org/10.17341/gazimmfd.1066034

Abstract

Doygun olmayan zemin davranışının başarılı bir şekilde tahmini, net gerilme ve matrik emmenin doygunluk derecesi ve boşluk oranı üzerindeki eşzamanlı etkisinin dikkate alınması gerektiğinden oldukça karmaşıktır. Hidromekanik davranışı yakalayabilmek için çok sayıda bünye modeli geliştirilmiş olmasına rağmen, bu modeller ya doygun olmayan zeminlerin temel davranışını simüle etmede yeterli doğruluktan yoksundur ya da sonuçların doğruluğunu etkileyecek seviyede karmaşık bir formülasyona dayanmaktadırlar. Bu nedenle, doygun olmayan zeminlerin hidromekaniğini anlamak için verimli algoritmalarla desteklenen tutarlı teorik modellere hala ihtiyaç vardır. Bu çalışmada, hidrolik histerezis de dahil olmak üzere elasto-plastisiteye dayalı hidro-mekanik bir model geliştirilmiştir. Önerilen model, kendi türündeki benzer modellere kıyasla daha basit ancak güçlü bir matematiksel formülasyona dayanmaktadır. Model, elde etmek için az sayıda üç eksenli deney gerektiren malzeme parametrelerine ihtiyaç duyar. Çalışmada özellikle boşluk oranındaki değişimin su tutma davranışı üzerindeki etkisine odaklanılmıştır. Modelin integrasyonunda, çeşitli net gerilme ve emme izleri altında sabit emme ve sabit su muhtevasında yapılmış bir dizi doygun olmayan üç eksenli deneyin simüle edildiği verimli bir açık integrasyon algoritması geliştirilmiştir. Doğrulama analizleri, doygun olmayan zeminler için önerilen modelin kapasitesini gösterecek şekilde iyi sonuçlar vermiştir.

Supporting Institution

TÜBİTAK

Project Number

117M330

Thanks

Yazarlar TÜBİTAK'a proje desteği için teşekkürü bir borç bilir.

References

  • 1. Aitchison G., Donald I., Effective stresses in unsaturated soils, Proceedings 2nd Australia-New Zealand Conference on Soil Mechanics and Foundation Engineering, Christchurch, N.Z., Wellington, New Zealand, New Zealand Institution of Engineers, 1956, 192-199.
  • 2. Bishop A.W., The principle of effective stress, Teknisk ukeblad, 39, 859-863, 1959.
  • 3. Fredlund D.G., Morgenstern N.R., Constitutive relations for volume change in unsaturated soils, Canadian Geotechnical Journal, 13 (3), 261-276, 1976.
  • 4. Lloret A., Alonso E.E., Consolidation of unsaturated soils including swelling and collapse behaviour, Géotechnique, 30 (4), 449-477, 1980.
  • 5. Alonso E.E., Gens A., Josa A., A constitutive model for partially saturated soils, Géotechnique, 40 (3), 405-430, 1990.
  • 6. Vaunat J., Romero E., Jommi C., An elastoplastic hydro-mechanical model for unsaturated soils, Experimental evidence and theoretical approaches in unsaturated soils, 20 (0), Editörler: Tarantino A., C. Mancuso, Trento, Italy, Balkema: Trento, 2000, 0.
  • 7. Khalili N., Habte M.A., Valliappan S., A bounding surface plasticity model for cyclic loading of granular soils, Int J Numer Methods Eng, 63 (14), 1939-1960, 2005.
  • 8. Kodikara J., Jayasundara C., Zhou A., A generalised constitutive model for unsaturated compacted soils considering wetting/drying cycles and environmentally-stabilised line, Comput Geotech, 118 (December 2019), 103332, 2020.
  • 9. Cao Z., Chen J., Alonso E.E., Tarragona A.R., Cai Y., Gu C., Zhang Q., A constitutive model for the accumulated strain of unsaturated soil under high‐cycle traffic loading, Int J Numer Anal Methods Geomech, nag.3188, 2021.
  • 10. Wheeler S.J., Sharma R.S., Buisson M.S.R.R., Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils, Géotechnique, 53 (1), 41-54, 2003.
  • 11. Gallipoli D., Constitutive and numerical modelling of unsaturated soils, PhD thesis, University of Glasgow, 2000.
  • 12. Jommi C., Remarks on the constitutive modelling of unsaturated soils, Experimental Evidence and Theoretical Approaches in Unsaturated Soils, (1968), Editörler: Tarantino A., C. Mancuso, CRC Press, 2000, 147-162.
  • 13. Sun D.A., Sheng D., Xiang L., Sloan S.W., Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions, Comput Geotech, 35 (6), 845-852, 2008.
  • 14. Terzaghi K., Erdbaumechanik auf bodenphysikalischer Grundlage. F. Deuticke, 1925.
  • 15. Fredlund D.G., Pham H.Q., Independent Roles of the Stress State Variables on Volume–Mass Constitutive Relations, Theoretical and Numerical Unsaturated Soil Mechanics, Berlin, Heidelberg, Springer Berlin Heidelberg, 37-44, 2007.
  • 16. Sheng D., Fredlund D.G., Gens A., A new modelling approach for unsaturated soils using independent stress variables, Canadian Geotechnical Journal, 45 (4), 511-534, 2008.
  • 17. Sheng D., Zhou A.N., Coupling hydraulic with mechanical models for unsaturated soils, Canadian Geotechnical Journal, 48 (5), 826-840, 2011.
  • 18. Ng C.W.W., Zhou C., Chiu C.F., Constitutive modelling of state-dependent behaviour of unsaturated soils: an overview, Acta Geotech, 15 (10), 2705-2725, 2020.
  • 19. Arroyo H., Rojas E., Fully coupled hydromechanical model for compacted soils, Comptes Rendus Mécanique, 347 (1), 1-18, 2019.
  • 20. D’onza F., Gallipoli D., Wheeler S., Casini F., Vaunat J., Khalili N., Laloui L., Mancuso C., Mašín D., Nuth M., Pereira J.M.JM., Vassallo R., Benchmark of constitutive models for unsaturated soils, Géotechnique, 61 (4), 283-302, 2011.
  • 21. Sheng D., Review of fundamental principles in modelling unsaturated soil behaviour, Comput Geotech, 38 (6), 757-776, 2011.
  • 22. Hillel D., The State of Water in the Soil, Soil and Water, 63, London. U.K, Elsevier, 49-77, 1971.
  • 23. Fredlund D.G., Rahardjo H., Soil mechanics for unsaturated soils, 1st editio. New York, USA, Wiley-Interscience, 1993.
  • 24. Peranić J., Moscariello M., Cuomo S., Arbanas Ž., Hydro-mechanical properties of unsaturated residual soil from a flysch rock mass, Eng Geol, 269, 105546, 2020.
  • 25. Barbour S.L., Nineteenth Canadian Geotechnical Colloquium: The soil-water characteristic curve: a historical perspective, Canadian Geotechnical Journal, 35 (5), 873-894, 1998.
  • 26. Romero E., Gens A., Lloret A., Water permeability, water retention and microstructure of unsaturated compacted Boom clay, Eng Geol, 54 (1-2), 117-127, 1999.
  • 27. Ng C.W.W., Pang Y.W., Influence of Stress State on Soil-Water Characteristics and Slope Stability, Journal of Geotechnical and Geoenvironmental Engineering, 126 (2), 157-166, 2000.
  • 28. Zhou A., Sheng D., Sloan S.W., Gens A., Interpretation of unsaturated soil behaviour in the stress-saturation space. II: Constitutive relationships and validations, Comput Geotech, 43, 111-123, 2012.
  • 29. Gallipoli D., A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio, Geotechnique, 62 (7), 605-616, 2012.
  • 30. Wong K.S., Mašín D., Coupled hydro-mechanical model for partially saturated soils predicting small strain stiffness, Comput Geotech, 61, 355-369, 2014.
  • 31. Li X.S., Modelling of hysteresis response for arbitrary wetting/drying paths, Comput Geotech, 32 (2), 133-137, 2005.
  • 32. Gallipoli D., Bruno A.W., D’Onza F., Mancuso C., A bounding surface hysteretic water retention model for deformable soils, Geotechnique, 65 (10), 793-804, 2015.
  • 33. Zhou C., Ng C.W.W., Chen R., A bounding surface plasticity model for unsaturated soil at small strains, Int J Numer Anal Methods Geomech, 39 (11), 1141-1164, 2015.
  • 34. Wheeler S.J., Inclusion of specific water volume within an elasto-plastic model for unsaturated soil, Canadian Geotechnical Journal, 33 (1), 42-57, 1996.
  • 35. Dangla P., Malinsky L., Coussy O., Plasticity and imbibition-drainage curves for unsaturated soils: a unified approach, Numerical models in geomechanics: NUMOG VI, Editörler: PIETRUSZCZAK S.., G.N. PANDE, Montreal, Quebec, 141-146, 1997.
  • 36. Sheng D., Sloan S.W., Gens A., A constitutive model for unsaturated soils: thermomechanical and computational aspects, Comput Mech, 33 (6), 453-465, 2004.
  • 37. Zhou A., Wu S., Li J., Sheng D., Including degree of capillary saturation into constitutive modelling of unsaturated soils, Comput Geotech, 95 (October 2017), 82-98, 2018.
  • 38. Khalili N., Habte M.A., Zargarbashi S., A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses, Comput Geotech, 35 (6), 872-889, 2008.
  • 39. Li J., Yin Z.-Y., Cui Y.-J., Liu K., Yin J.-H., An elasto-plastic model of unsaturated soil with an explicit degree of saturation-dependent CSL, Eng Geol, 260, 105240, 2019.
  • 40. Zhou A., Modelling hydro-mechanical behavior for unsaturated soils, Japanese Geotechnical Society Special Publication, 5 (2), 79-94, 2017.
  • 41. Liu Y., Cai G., Zhou A., Han B., Li J., Zhao C., A fully coupled constitutive model for thermo-hydro-mechanical behaviour of unsaturated soils, Comput Geotech, 133 (January), 104032, 2021.
  • 42. Gallipoli D., Wheeler S.J., Karstunen M., Modelling the variation of degree of saturation in a deformable unsaturated soil, Geotechnique, 53 (1), 105-112, 2003.
  • 43. Bruno A.W., Gallipoli D., A coupled hydromechanical bounding surface model predicting the hysteretic behaviour of unsaturated soils, Comput Geotech, 110 (February), 287-295, 2019.
  • 44. Mašín D., Predicting the dependency of a degree of saturation on void ratio and suction using effective stress principle for unsaturated soils, Int J Numer Anal Methods Geomech, 34 (1), 73-90, 2010.
  • 45. Zhou C., Ng C.W.W.W.W., A new and simple stress-dependent water retention model for unsaturated soil, Comput Geotech, 62, 216-222, 2014.
  • 46. ’Eyüpgiller M.M., ’Ülker M.B.C., Effect of plastic deviatoric strains on the hardening of unsaturated soils in relation to their hydro-mechanical behavior, 8th Geotechnical Symposium, Oct. 13-15, Istanbul, 2019.
  • 47. van Genuchten M.Th., A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils, Soil science society of America journal, 44 (5), 892-898, 1980.
  • 48. Fredlund D., Xing A., Equations for the soil-water characteristic curve, Canadian Geotechnical Journal, 31 (4), 521-532, 1994.
  • 49. Pertassek T., Peters A., Durner W., HYPROP Data Evaluation Software, User’s Manual, Umwelt Monitoring Systeme GmbH, München, Germany. 2011.
  • 50. Schindler U.U.G., Müller L., Soil hydraulic functions of international soils measured with the Extended Evaporation Method (EEM) and the HYPROP device, Open Data Journal for Agricultural Research, 3, 10-16, 2017.
  • 51. Ahmadi-Naghadeh R., Hydro-mechanical behavior of unsaturated specimens isotropically reconstituted from slurry and compacted specimens, PhD Thesis, MIDDLE EAST TECHNICAL UNIVERSITY, 2016.
  • 52. Eyüpgiller M.M., Kenanoğlu M.B., Ülker M.B.C., Toker N.K., A constitutive model for hydromechanically coupled behavior of unsaturated soils with hydraulic hysteresis, Proceedings of Pan-American Conference on Unsaturated Soils, Brazil, 2021.
  • 53. Sharma R.S., Mechanical behaviour of unsaturated highly expansive clays, PhD Dissertation, University of Oxford, 1998.
  • 54. Sun D.A., Sheng D.C., Cui H.B., Sloan S.W., A density-dependent elastoplastic hydro-mechanical model for unsaturated compacted soils, Int J Numer Anal Methods Geomech, 31 (11), 1257-1279, 2007.
Year 2024, Volume: 39 Issue: 3, 1387 - 1400
https://doi.org/10.17341/gazimmfd.1066034

Abstract

Project Number

117M330

References

  • 1. Aitchison G., Donald I., Effective stresses in unsaturated soils, Proceedings 2nd Australia-New Zealand Conference on Soil Mechanics and Foundation Engineering, Christchurch, N.Z., Wellington, New Zealand, New Zealand Institution of Engineers, 1956, 192-199.
  • 2. Bishop A.W., The principle of effective stress, Teknisk ukeblad, 39, 859-863, 1959.
  • 3. Fredlund D.G., Morgenstern N.R., Constitutive relations for volume change in unsaturated soils, Canadian Geotechnical Journal, 13 (3), 261-276, 1976.
  • 4. Lloret A., Alonso E.E., Consolidation of unsaturated soils including swelling and collapse behaviour, Géotechnique, 30 (4), 449-477, 1980.
  • 5. Alonso E.E., Gens A., Josa A., A constitutive model for partially saturated soils, Géotechnique, 40 (3), 405-430, 1990.
  • 6. Vaunat J., Romero E., Jommi C., An elastoplastic hydro-mechanical model for unsaturated soils, Experimental evidence and theoretical approaches in unsaturated soils, 20 (0), Editörler: Tarantino A., C. Mancuso, Trento, Italy, Balkema: Trento, 2000, 0.
  • 7. Khalili N., Habte M.A., Valliappan S., A bounding surface plasticity model for cyclic loading of granular soils, Int J Numer Methods Eng, 63 (14), 1939-1960, 2005.
  • 8. Kodikara J., Jayasundara C., Zhou A., A generalised constitutive model for unsaturated compacted soils considering wetting/drying cycles and environmentally-stabilised line, Comput Geotech, 118 (December 2019), 103332, 2020.
  • 9. Cao Z., Chen J., Alonso E.E., Tarragona A.R., Cai Y., Gu C., Zhang Q., A constitutive model for the accumulated strain of unsaturated soil under high‐cycle traffic loading, Int J Numer Anal Methods Geomech, nag.3188, 2021.
  • 10. Wheeler S.J., Sharma R.S., Buisson M.S.R.R., Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils, Géotechnique, 53 (1), 41-54, 2003.
  • 11. Gallipoli D., Constitutive and numerical modelling of unsaturated soils, PhD thesis, University of Glasgow, 2000.
  • 12. Jommi C., Remarks on the constitutive modelling of unsaturated soils, Experimental Evidence and Theoretical Approaches in Unsaturated Soils, (1968), Editörler: Tarantino A., C. Mancuso, CRC Press, 2000, 147-162.
  • 13. Sun D.A., Sheng D., Xiang L., Sloan S.W., Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions, Comput Geotech, 35 (6), 845-852, 2008.
  • 14. Terzaghi K., Erdbaumechanik auf bodenphysikalischer Grundlage. F. Deuticke, 1925.
  • 15. Fredlund D.G., Pham H.Q., Independent Roles of the Stress State Variables on Volume–Mass Constitutive Relations, Theoretical and Numerical Unsaturated Soil Mechanics, Berlin, Heidelberg, Springer Berlin Heidelberg, 37-44, 2007.
  • 16. Sheng D., Fredlund D.G., Gens A., A new modelling approach for unsaturated soils using independent stress variables, Canadian Geotechnical Journal, 45 (4), 511-534, 2008.
  • 17. Sheng D., Zhou A.N., Coupling hydraulic with mechanical models for unsaturated soils, Canadian Geotechnical Journal, 48 (5), 826-840, 2011.
  • 18. Ng C.W.W., Zhou C., Chiu C.F., Constitutive modelling of state-dependent behaviour of unsaturated soils: an overview, Acta Geotech, 15 (10), 2705-2725, 2020.
  • 19. Arroyo H., Rojas E., Fully coupled hydromechanical model for compacted soils, Comptes Rendus Mécanique, 347 (1), 1-18, 2019.
  • 20. D’onza F., Gallipoli D., Wheeler S., Casini F., Vaunat J., Khalili N., Laloui L., Mancuso C., Mašín D., Nuth M., Pereira J.M.JM., Vassallo R., Benchmark of constitutive models for unsaturated soils, Géotechnique, 61 (4), 283-302, 2011.
  • 21. Sheng D., Review of fundamental principles in modelling unsaturated soil behaviour, Comput Geotech, 38 (6), 757-776, 2011.
  • 22. Hillel D., The State of Water in the Soil, Soil and Water, 63, London. U.K, Elsevier, 49-77, 1971.
  • 23. Fredlund D.G., Rahardjo H., Soil mechanics for unsaturated soils, 1st editio. New York, USA, Wiley-Interscience, 1993.
  • 24. Peranić J., Moscariello M., Cuomo S., Arbanas Ž., Hydro-mechanical properties of unsaturated residual soil from a flysch rock mass, Eng Geol, 269, 105546, 2020.
  • 25. Barbour S.L., Nineteenth Canadian Geotechnical Colloquium: The soil-water characteristic curve: a historical perspective, Canadian Geotechnical Journal, 35 (5), 873-894, 1998.
  • 26. Romero E., Gens A., Lloret A., Water permeability, water retention and microstructure of unsaturated compacted Boom clay, Eng Geol, 54 (1-2), 117-127, 1999.
  • 27. Ng C.W.W., Pang Y.W., Influence of Stress State on Soil-Water Characteristics and Slope Stability, Journal of Geotechnical and Geoenvironmental Engineering, 126 (2), 157-166, 2000.
  • 28. Zhou A., Sheng D., Sloan S.W., Gens A., Interpretation of unsaturated soil behaviour in the stress-saturation space. II: Constitutive relationships and validations, Comput Geotech, 43, 111-123, 2012.
  • 29. Gallipoli D., A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio, Geotechnique, 62 (7), 605-616, 2012.
  • 30. Wong K.S., Mašín D., Coupled hydro-mechanical model for partially saturated soils predicting small strain stiffness, Comput Geotech, 61, 355-369, 2014.
  • 31. Li X.S., Modelling of hysteresis response for arbitrary wetting/drying paths, Comput Geotech, 32 (2), 133-137, 2005.
  • 32. Gallipoli D., Bruno A.W., D’Onza F., Mancuso C., A bounding surface hysteretic water retention model for deformable soils, Geotechnique, 65 (10), 793-804, 2015.
  • 33. Zhou C., Ng C.W.W., Chen R., A bounding surface plasticity model for unsaturated soil at small strains, Int J Numer Anal Methods Geomech, 39 (11), 1141-1164, 2015.
  • 34. Wheeler S.J., Inclusion of specific water volume within an elasto-plastic model for unsaturated soil, Canadian Geotechnical Journal, 33 (1), 42-57, 1996.
  • 35. Dangla P., Malinsky L., Coussy O., Plasticity and imbibition-drainage curves for unsaturated soils: a unified approach, Numerical models in geomechanics: NUMOG VI, Editörler: PIETRUSZCZAK S.., G.N. PANDE, Montreal, Quebec, 141-146, 1997.
  • 36. Sheng D., Sloan S.W., Gens A., A constitutive model for unsaturated soils: thermomechanical and computational aspects, Comput Mech, 33 (6), 453-465, 2004.
  • 37. Zhou A., Wu S., Li J., Sheng D., Including degree of capillary saturation into constitutive modelling of unsaturated soils, Comput Geotech, 95 (October 2017), 82-98, 2018.
  • 38. Khalili N., Habte M.A., Zargarbashi S., A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses, Comput Geotech, 35 (6), 872-889, 2008.
  • 39. Li J., Yin Z.-Y., Cui Y.-J., Liu K., Yin J.-H., An elasto-plastic model of unsaturated soil with an explicit degree of saturation-dependent CSL, Eng Geol, 260, 105240, 2019.
  • 40. Zhou A., Modelling hydro-mechanical behavior for unsaturated soils, Japanese Geotechnical Society Special Publication, 5 (2), 79-94, 2017.
  • 41. Liu Y., Cai G., Zhou A., Han B., Li J., Zhao C., A fully coupled constitutive model for thermo-hydro-mechanical behaviour of unsaturated soils, Comput Geotech, 133 (January), 104032, 2021.
  • 42. Gallipoli D., Wheeler S.J., Karstunen M., Modelling the variation of degree of saturation in a deformable unsaturated soil, Geotechnique, 53 (1), 105-112, 2003.
  • 43. Bruno A.W., Gallipoli D., A coupled hydromechanical bounding surface model predicting the hysteretic behaviour of unsaturated soils, Comput Geotech, 110 (February), 287-295, 2019.
  • 44. Mašín D., Predicting the dependency of a degree of saturation on void ratio and suction using effective stress principle for unsaturated soils, Int J Numer Anal Methods Geomech, 34 (1), 73-90, 2010.
  • 45. Zhou C., Ng C.W.W.W.W., A new and simple stress-dependent water retention model for unsaturated soil, Comput Geotech, 62, 216-222, 2014.
  • 46. ’Eyüpgiller M.M., ’Ülker M.B.C., Effect of plastic deviatoric strains on the hardening of unsaturated soils in relation to their hydro-mechanical behavior, 8th Geotechnical Symposium, Oct. 13-15, Istanbul, 2019.
  • 47. van Genuchten M.Th., A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils, Soil science society of America journal, 44 (5), 892-898, 1980.
  • 48. Fredlund D., Xing A., Equations for the soil-water characteristic curve, Canadian Geotechnical Journal, 31 (4), 521-532, 1994.
  • 49. Pertassek T., Peters A., Durner W., HYPROP Data Evaluation Software, User’s Manual, Umwelt Monitoring Systeme GmbH, München, Germany. 2011.
  • 50. Schindler U.U.G., Müller L., Soil hydraulic functions of international soils measured with the Extended Evaporation Method (EEM) and the HYPROP device, Open Data Journal for Agricultural Research, 3, 10-16, 2017.
  • 51. Ahmadi-Naghadeh R., Hydro-mechanical behavior of unsaturated specimens isotropically reconstituted from slurry and compacted specimens, PhD Thesis, MIDDLE EAST TECHNICAL UNIVERSITY, 2016.
  • 52. Eyüpgiller M.M., Kenanoğlu M.B., Ülker M.B.C., Toker N.K., A constitutive model for hydromechanically coupled behavior of unsaturated soils with hydraulic hysteresis, Proceedings of Pan-American Conference on Unsaturated Soils, Brazil, 2021.
  • 53. Sharma R.S., Mechanical behaviour of unsaturated highly expansive clays, PhD Dissertation, University of Oxford, 1998.
  • 54. Sun D.A., Sheng D.C., Cui H.B., Sloan S.W., A density-dependent elastoplastic hydro-mechanical model for unsaturated compacted soils, Int J Numer Anal Methods Geomech, 31 (11), 1257-1279, 2007.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mustafa Mert Eyüpgiller This is me 0000-0001-7375-4039

Mehmet Barış Can Ülker 0000-0001-7632-2303

Project Number 117M330
Early Pub Date January 19, 2024
Publication Date
Submission Date February 1, 2022
Acceptance Date August 2, 2023
Published in Issue Year 2024 Volume: 39 Issue: 3

Cite

APA Eyüpgiller, M. M., & Ülker, M. B. C. (2024). Doygun olmayan zeminler için bağlaşık elasto-plastik formülasyona dayalı hidrolik histerezisi dikkate alan hidro-mekanik bir bünye modeli. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1387-1400. https://doi.org/10.17341/gazimmfd.1066034
AMA Eyüpgiller MM, Ülker MBC. Doygun olmayan zeminler için bağlaşık elasto-plastik formülasyona dayalı hidrolik histerezisi dikkate alan hidro-mekanik bir bünye modeli. GUMMFD. January 2024;39(3):1387-1400. doi:10.17341/gazimmfd.1066034
Chicago Eyüpgiller, Mustafa Mert, and Mehmet Barış Can Ülker. “Doygun Olmayan Zeminler için bağlaşık Elasto-Plastik formülasyona Dayalı Hidrolik Histerezisi Dikkate Alan Hidro-Mekanik Bir bünye Modeli”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 3 (January 2024): 1387-1400. https://doi.org/10.17341/gazimmfd.1066034.
EndNote Eyüpgiller MM, Ülker MBC (January 1, 2024) Doygun olmayan zeminler için bağlaşık elasto-plastik formülasyona dayalı hidrolik histerezisi dikkate alan hidro-mekanik bir bünye modeli. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1387–1400.
IEEE M. M. Eyüpgiller and M. B. C. Ülker, “Doygun olmayan zeminler için bağlaşık elasto-plastik formülasyona dayalı hidrolik histerezisi dikkate alan hidro-mekanik bir bünye modeli”, GUMMFD, vol. 39, no. 3, pp. 1387–1400, 2024, doi: 10.17341/gazimmfd.1066034.
ISNAD Eyüpgiller, Mustafa Mert - Ülker, Mehmet Barış Can. “Doygun Olmayan Zeminler için bağlaşık Elasto-Plastik formülasyona Dayalı Hidrolik Histerezisi Dikkate Alan Hidro-Mekanik Bir bünye Modeli”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (January 2024), 1387-1400. https://doi.org/10.17341/gazimmfd.1066034.
JAMA Eyüpgiller MM, Ülker MBC. Doygun olmayan zeminler için bağlaşık elasto-plastik formülasyona dayalı hidrolik histerezisi dikkate alan hidro-mekanik bir bünye modeli. GUMMFD. 2024;39:1387–1400.
MLA Eyüpgiller, Mustafa Mert and Mehmet Barış Can Ülker. “Doygun Olmayan Zeminler için bağlaşık Elasto-Plastik formülasyona Dayalı Hidrolik Histerezisi Dikkate Alan Hidro-Mekanik Bir bünye Modeli”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 3, 2024, pp. 1387-00, doi:10.17341/gazimmfd.1066034.
Vancouver Eyüpgiller MM, Ülker MBC. Doygun olmayan zeminler için bağlaşık elasto-plastik formülasyona dayalı hidrolik histerezisi dikkate alan hidro-mekanik bir bünye modeli. GUMMFD. 2024;39(3):1387-400.