Research Article
BibTex RIS Cite

Lityum iyon pil elektrotlarında haddeleme parametrelerinin fiziksel ve elektrokimyasal özellikler üzerindeki etkisinin incelenmesi

Year 2024, Volume: 39 Issue: 3, 1427 - 1438, 20.05.2024
https://doi.org/10.17341/gazimmfd.1277652

Abstract

Lityum iyon pillerin elektrotlarının porozitesini, enerji yoğunluğunu ve elektrokimyasal performansını iyileştirmek için haddeleme işlemi kullanılmaktadır. Elektrotların gözenek yapısının optimize edilebilmesi için, haddeleme işlemi belirleyici bir öneme sahiptir. Bu nedenle, kese tipi hücreler için hazırlanmış NMC ve grafit elektrotlara haddeleme işlemi uygulanmıştır. Haddeleme sonrası, fiziksel ve elektrokimyasal karakterizasyonlar yapılmıştır. Üretilen elektrotlar 150µm kalınlıklarda hazırlanmış ve %10, %15, %20, %30 deformasyon oranlarında haddelenmiştir. Elektrotların yüzey morfolojisi, Taramalı Elektron Mikroskopisi (SEM) kullanılarak karakterize edilmiştir. 2.7V'dan 4.3V'a kadar olan empedans, hız kapasitesi ve çevrim ömrü testleri ile kese tipi hücrelerin elektrokimyasal performansı araştırılmıştır. Haddeleme sonrası, daha küçük gözenek boyutu ve dağılımıyla birlikte elektrokimyasal olarak aktif alanın arttığı gösterilmiştir. Islanma kabiliyetinin artan haddeleme oranıyla azaldığı tespit edilmiştir. Grafit elektrotlarda %20, NMC elektrotlarda %15 deformasyon oranında haddelenmiş elektrotlar, C/10 akım hızında dengeli deşarj kapasitesi gösterdiği tespit edilmiştir.

Supporting Institution

Sakarya Uygulamalı Bilimler Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

2021-16

References

  • 1. Deng D., Li-Ion Batteries: Basics, Progress, and Challenges, Department of Chemical Engineering and Materials Science, Energy Science and Engineering, 3 (5), 385-387, 2015.
  • 2. Linden D., Reddy T., Handbook of Batteries, Third Ed., McGraw-Hill, USA, 2001.
  • 3. Dominko R., Edström K., Fichtner M., Perraud S., Punckt C., Inventing the Sustainable Batteries of the Future, Research Needs and Future Actions, Battery 2030. Sweden, 8 March. 2020.
  • 4. Meyer C., Bockholt H., Haselrieder W., Kwade A., Characterization of The Calendering Process for Compaction of Electrodes for Lithium-Ion Batteries, Journal of Materials Processing Tech. 173, 172-178, 2017.
  • 5. Warner T. J., Lithium-ion Battery Operation, Lithium-Ion Battery Chemistries A Primer, Elsevier, United Kingdom, 44-74, 2019.
  • 6. Acharya T., Chaupatnaik A., Pathak A., Roy A., Pati S., Effect of Calendering on Rate Performance of Li4Ti5O12 Anodes for Lithium-Ion Batteries, Journal of Electroceramics. 85-92, 2020.
  • 7. Honghe Zheng H., Li Tan L., Gao Liu G., Xiangyun Song X., Battaglia V., Calendering Effects on The Physical and Electrochemical Properties of Li [Ni1/3Mn1/3Co1/3] O2 Cathode, Journal of Power Sources. 52-57, 2012.
  • 8. Shim J., Striebel A. K.., Effect of Electrode Density on Cycle Performance and Irreversible Capacity Loss for Natural Graphite Anode in Lithium-Ion Batteries, Journal of Power Sources. 119-221, 2003.
  • 9. Marks T., Trussler S., Smith A. J., Xiong D., Dahn J. R., A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers, Journal of The Electrochemical Society. A51-A57, 2011.
  • 10. Primo E., Chouchane M., Touzin M., P., Franco A., Understanding the Calendering Process Ability of Li (Ni0.33Mn0.33Co0.33) O2-Based Cathodes, Journal of Power Sources. 2-11, 2011.
  • 11. Karkar Z., Jaouhari T., Tranchot A., Mazouzi D., Guyomar D., Lestriez B., Roué L., How Silicon Electrodes Can Be Calendered Without Altering Their Mechanical Strength and Cycle Life, Journal of Power Sources. 136-147, 2017.
  • 12. Wang C.-W., Yi Y.-B., Sastry A. M., Shim J., Striebel K. A., Particle Compression and Conductivity in Li-Ion Anodes With Graphite Additives, Journal of The Electrochemical Society. A1489-A1498, 2004.
  • 13. Meyer C., Weyhe M., Haselrieder W., Kwade A., Heated Calendering of Cathodes for Lithium-Ion Batteries with Varied Carbon Black and Binder Contents, Energy Technology. 1-2, 2019.
  • 14. Bockholt H., Indrikova M., 1, Netz A., Golks F., Kwade A., The Interaction of Consecutive Process Steps in The Manufacturing of Lithium-Ion Battery Electrodes with Regard to Structural and Electrochemical Properties, Journal of Power Sources. 140-151, 2016.
  • 15. Davoodabadi A., Li J., Zhou H., Woo III D., Singler J. T., Jin C., Effect of Calendering and Temperature on Electrolyte Wetting in Lithium-Ion Battery Electrodes, Journal of Energy Storage, 1-10, 2019.
  • 16. Sheng Y., Fell R. C., Son K. Y., Metz M. B., Jiang J., Church C. B., Effect of Calendering on Electrode Wettability in Lithium-Ion Batteries, Frontiers in Energy Research, Energy Strorage, 1-7, 2014.
  • 17. Kök C., Alkaya A., Numerical Investigation of Different Cooling Applications for Pouch Type Lithium Ion Battery Cells, Journal of the Faculty of Engineering and Architecture of Gazi University 38 (1), 381-397, 2023.
  • 18. Lu X., Daemi R. S., Bertei A., Kok M., O’Regan K., Rasha L., Park J., Hinds G., Kendrick E., Brett D., Shearing R. P., Microstructural Evolution of Battery Electrodes During Calendering, Joule. 1-23, 2020.
  • 19. Schreiner D., Oguntke M., Günther T., Reinhart G., Modelling of the Calendering Process of NMC-622 Cathodes in Battery Production Analyzing Machine/Material–Process–Structure Correlations, Energy Technology, 1-11, 2019.
  • 20. Bhagyaraj M., Oluwafemi O., Kalarikkal N., Thomas S., Characterization of Nanomaterials Advances and Key Technologies, Elsevier, Woodhead Publishing, USA. 122-123, 2018.
  • 21. H. Zheng, L. Gao, X. Song, P. Ridgway, S. Xun, V.S. Battaglia, J. Power Sources, 52-57, 2012.
  • 22. H. Zheng, L. Gao, X. Song, P. Ridgway, S. Xun, V.S. Battaglia, J. Electrochem, Soc. 157 (10), A1060-A1066, 2010.
  • 23. Jeon H. D., Wettability in Electrodes and Its Impact on The Performance of Lithium-Ion Batteries, Energy Storage Material, 4, 2019.
  • 24. Huixiao K., Cheolwoong L., Tianyi L., Yongzhu F., Bo Y., Nicole H.,Vincent De A., Francesco De C., Likun Z., Geometric and Electrochemical Characteristics of LiNi1/3Mn1/3Co1/3O2 Electrode with Different Calendering Conditions, Electrochimica Acta 232, 431-438, 2017.
  • 25. Meyer C., Kosfelda M., Haselriedera W., Kwadea A., Process Modeling of The Electrode Calendering of Lithium-ion Batteries Regarding Variation of Cathode Active Materials and Mass Loadings, Journal of Energy Storage, 371-379, 2018.
  • 26. Xu M., Wang X., Electrode Thickness Correlated Parameters Estimation for a Li-ion NMC Battery Electrochemical Model, ECS Transactions, 491-507, 2017.
Year 2024, Volume: 39 Issue: 3, 1427 - 1438, 20.05.2024
https://doi.org/10.17341/gazimmfd.1277652

Abstract

Project Number

2021-16

References

  • 1. Deng D., Li-Ion Batteries: Basics, Progress, and Challenges, Department of Chemical Engineering and Materials Science, Energy Science and Engineering, 3 (5), 385-387, 2015.
  • 2. Linden D., Reddy T., Handbook of Batteries, Third Ed., McGraw-Hill, USA, 2001.
  • 3. Dominko R., Edström K., Fichtner M., Perraud S., Punckt C., Inventing the Sustainable Batteries of the Future, Research Needs and Future Actions, Battery 2030. Sweden, 8 March. 2020.
  • 4. Meyer C., Bockholt H., Haselrieder W., Kwade A., Characterization of The Calendering Process for Compaction of Electrodes for Lithium-Ion Batteries, Journal of Materials Processing Tech. 173, 172-178, 2017.
  • 5. Warner T. J., Lithium-ion Battery Operation, Lithium-Ion Battery Chemistries A Primer, Elsevier, United Kingdom, 44-74, 2019.
  • 6. Acharya T., Chaupatnaik A., Pathak A., Roy A., Pati S., Effect of Calendering on Rate Performance of Li4Ti5O12 Anodes for Lithium-Ion Batteries, Journal of Electroceramics. 85-92, 2020.
  • 7. Honghe Zheng H., Li Tan L., Gao Liu G., Xiangyun Song X., Battaglia V., Calendering Effects on The Physical and Electrochemical Properties of Li [Ni1/3Mn1/3Co1/3] O2 Cathode, Journal of Power Sources. 52-57, 2012.
  • 8. Shim J., Striebel A. K.., Effect of Electrode Density on Cycle Performance and Irreversible Capacity Loss for Natural Graphite Anode in Lithium-Ion Batteries, Journal of Power Sources. 119-221, 2003.
  • 9. Marks T., Trussler S., Smith A. J., Xiong D., Dahn J. R., A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers, Journal of The Electrochemical Society. A51-A57, 2011.
  • 10. Primo E., Chouchane M., Touzin M., P., Franco A., Understanding the Calendering Process Ability of Li (Ni0.33Mn0.33Co0.33) O2-Based Cathodes, Journal of Power Sources. 2-11, 2011.
  • 11. Karkar Z., Jaouhari T., Tranchot A., Mazouzi D., Guyomar D., Lestriez B., Roué L., How Silicon Electrodes Can Be Calendered Without Altering Their Mechanical Strength and Cycle Life, Journal of Power Sources. 136-147, 2017.
  • 12. Wang C.-W., Yi Y.-B., Sastry A. M., Shim J., Striebel K. A., Particle Compression and Conductivity in Li-Ion Anodes With Graphite Additives, Journal of The Electrochemical Society. A1489-A1498, 2004.
  • 13. Meyer C., Weyhe M., Haselrieder W., Kwade A., Heated Calendering of Cathodes for Lithium-Ion Batteries with Varied Carbon Black and Binder Contents, Energy Technology. 1-2, 2019.
  • 14. Bockholt H., Indrikova M., 1, Netz A., Golks F., Kwade A., The Interaction of Consecutive Process Steps in The Manufacturing of Lithium-Ion Battery Electrodes with Regard to Structural and Electrochemical Properties, Journal of Power Sources. 140-151, 2016.
  • 15. Davoodabadi A., Li J., Zhou H., Woo III D., Singler J. T., Jin C., Effect of Calendering and Temperature on Electrolyte Wetting in Lithium-Ion Battery Electrodes, Journal of Energy Storage, 1-10, 2019.
  • 16. Sheng Y., Fell R. C., Son K. Y., Metz M. B., Jiang J., Church C. B., Effect of Calendering on Electrode Wettability in Lithium-Ion Batteries, Frontiers in Energy Research, Energy Strorage, 1-7, 2014.
  • 17. Kök C., Alkaya A., Numerical Investigation of Different Cooling Applications for Pouch Type Lithium Ion Battery Cells, Journal of the Faculty of Engineering and Architecture of Gazi University 38 (1), 381-397, 2023.
  • 18. Lu X., Daemi R. S., Bertei A., Kok M., O’Regan K., Rasha L., Park J., Hinds G., Kendrick E., Brett D., Shearing R. P., Microstructural Evolution of Battery Electrodes During Calendering, Joule. 1-23, 2020.
  • 19. Schreiner D., Oguntke M., Günther T., Reinhart G., Modelling of the Calendering Process of NMC-622 Cathodes in Battery Production Analyzing Machine/Material–Process–Structure Correlations, Energy Technology, 1-11, 2019.
  • 20. Bhagyaraj M., Oluwafemi O., Kalarikkal N., Thomas S., Characterization of Nanomaterials Advances and Key Technologies, Elsevier, Woodhead Publishing, USA. 122-123, 2018.
  • 21. H. Zheng, L. Gao, X. Song, P. Ridgway, S. Xun, V.S. Battaglia, J. Power Sources, 52-57, 2012.
  • 22. H. Zheng, L. Gao, X. Song, P. Ridgway, S. Xun, V.S. Battaglia, J. Electrochem, Soc. 157 (10), A1060-A1066, 2010.
  • 23. Jeon H. D., Wettability in Electrodes and Its Impact on The Performance of Lithium-Ion Batteries, Energy Storage Material, 4, 2019.
  • 24. Huixiao K., Cheolwoong L., Tianyi L., Yongzhu F., Bo Y., Nicole H.,Vincent De A., Francesco De C., Likun Z., Geometric and Electrochemical Characteristics of LiNi1/3Mn1/3Co1/3O2 Electrode with Different Calendering Conditions, Electrochimica Acta 232, 431-438, 2017.
  • 25. Meyer C., Kosfelda M., Haselriedera W., Kwadea A., Process Modeling of The Electrode Calendering of Lithium-ion Batteries Regarding Variation of Cathode Active Materials and Mass Loadings, Journal of Energy Storage, 371-379, 2018.
  • 26. Xu M., Wang X., Electrode Thickness Correlated Parameters Estimation for a Li-ion NMC Battery Electrochemical Model, ECS Transactions, 491-507, 2017.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mustafa Akçil 0000-0003-2324-4000

Muhammet Barış Ekici 0000-0003-4263-0636

Project Number 2021-16
Early Pub Date January 19, 2024
Publication Date May 20, 2024
Submission Date April 5, 2023
Acceptance Date August 4, 2023
Published in Issue Year 2024 Volume: 39 Issue: 3

Cite

APA Akçil, M., & Ekici, M. B. (2024). Lityum iyon pil elektrotlarında haddeleme parametrelerinin fiziksel ve elektrokimyasal özellikler üzerindeki etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1427-1438. https://doi.org/10.17341/gazimmfd.1277652
AMA Akçil M, Ekici MB. Lityum iyon pil elektrotlarında haddeleme parametrelerinin fiziksel ve elektrokimyasal özellikler üzerindeki etkisinin incelenmesi. GUMMFD. May 2024;39(3):1427-1438. doi:10.17341/gazimmfd.1277652
Chicago Akçil, Mustafa, and Muhammet Barış Ekici. “Lityum Iyon Pil elektrotlarında Haddeleme Parametrelerinin Fiziksel Ve Elektrokimyasal özellikler üzerindeki Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 3 (May 2024): 1427-38. https://doi.org/10.17341/gazimmfd.1277652.
EndNote Akçil M, Ekici MB (May 1, 2024) Lityum iyon pil elektrotlarında haddeleme parametrelerinin fiziksel ve elektrokimyasal özellikler üzerindeki etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1427–1438.
IEEE M. Akçil and M. B. Ekici, “Lityum iyon pil elektrotlarında haddeleme parametrelerinin fiziksel ve elektrokimyasal özellikler üzerindeki etkisinin incelenmesi”, GUMMFD, vol. 39, no. 3, pp. 1427–1438, 2024, doi: 10.17341/gazimmfd.1277652.
ISNAD Akçil, Mustafa - Ekici, Muhammet Barış. “Lityum Iyon Pil elektrotlarında Haddeleme Parametrelerinin Fiziksel Ve Elektrokimyasal özellikler üzerindeki Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (May 2024), 1427-1438. https://doi.org/10.17341/gazimmfd.1277652.
JAMA Akçil M, Ekici MB. Lityum iyon pil elektrotlarında haddeleme parametrelerinin fiziksel ve elektrokimyasal özellikler üzerindeki etkisinin incelenmesi. GUMMFD. 2024;39:1427–1438.
MLA Akçil, Mustafa and Muhammet Barış Ekici. “Lityum Iyon Pil elektrotlarında Haddeleme Parametrelerinin Fiziksel Ve Elektrokimyasal özellikler üzerindeki Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 3, 2024, pp. 1427-38, doi:10.17341/gazimmfd.1277652.
Vancouver Akçil M, Ekici MB. Lityum iyon pil elektrotlarında haddeleme parametrelerinin fiziksel ve elektrokimyasal özellikler üzerindeki etkisinin incelenmesi. GUMMFD. 2024;39(3):1427-38.