Research Article
BibTex RIS Cite
Year 2023, , 932 - 950, 28.12.2023
https://doi.org/10.29109/gujsc.1334651

Abstract

References

  • [1] Prasad, D., Sivaram, T. K., Berchmans, S., & Yegnaraman, V., Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent, Journal of Power Sources, 160(2), (2006) 991-996. https://doi.org/10.1016/j.jpowsour.2006.02.051
  • [2] Ter Heijne, A., Hamelers, H. V., De Wilde, V., Rozendal, R. A., & Buisman, C. J., A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells, Environmental science & technology, 40(17), (2007) 5200-5205. https://doi.org/10.1021/es0608545
  • [3] von Heijne, G., Membrane-protein topology, Nature reviews Molecular cell biology, 7(12), (2006) 909-918. https://doi.org/10.1038/nrm2063
  • [4] Rawlings, D.E., & Kusano, T., Molecular genetics of Thiobacillus ferrooxidans. Microbiological Reviews, 58(1), (1994) 39-55. https://doi.org/10.1128/mr.58.1.39-55.1994
  • [5] Derya Yüksel Köseoğlu, Microbiological Iron Removal (Master Thesis-Environmental Engineering-Gebze Technical University) (2005) [6] Rzhepishevska, O., Physiology and Genetics of Acidithiobacillus species: Applications for Biomining (Doctoral dissertation, Molekylärbiologi (Teknisk-naturvetenskaplig fakultet)) (2008). [7] Barrett, M. L., Harvey, I., Sundararajan, M., Surendran, R., Hall, J. F., Ellis, M. J., ... & Hasnain, S. S., Atomic resolution crystal structures, EXAFS, and quantum chemical studies of rusticyanin and its two mutants provide insight into its unusual properties, Biochemistry, 45(9), (2006) 2927-2939.
  • https://doi.org/10.1021/bi052372w
  • [8] http://www.biophysics.liv.ac.uk/images/rusti_ribbon.jpg
  • [9] Abergel, C., Nitschke, W., Malarte, G., Bruschi, M., Claverie, J. M., & Giudici-Orticoni, M.T., The structure of Acidithiobacillus ferrooxidans c4-cytochrome: a model for complex-induced electron transfer tuning, Structure, 11(5), (2003) 547-555.
  • DOI 10.1016/S0969-2126(03)00072-8
  • [10] Schrader, J. A., & Holmes, D.S., Phenotypic switching of Thiobacillus ferrooxidans, Journal of bacteriology, 170(9), (1988) 3915-3923.
  • https://doi.org/10.1128/jb.170.9.3915-3923.1988
  • [11] Harrison Jr, A.P., The acidophilic thiobacilli and other acidophilic bacteria that share their habitat, Annual review of microbiology, 38(1), (1984) 265-292.
  • doi: 10.1146/annurev.mi.38.100184.001405
  • [12] Lurie, K. A., & Cherkaev, A.V., G-closure of a set of anisotropically conducting media in the two-dimensional case, Journal of optimization theory and applications, 42, (1984) 283-304.
  • https://doi.org/10.1007/BF00934300
  • [13] Nemati, M., & Webb, C., Combined biological and chemical oxidation of ferrous sulfate using immobilised Thiobacillus ferrooxidans, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 74(6), (1999) 562-570.
  • https://doi.org/10.1002/(SICI)1097-4660

THE ANALYSIS OF ELECTRON TRANSFER MECHANISM WITHIN FUEL CELL SYSTEMS: ELECTROCHEMICAL AND MICROBIAL APPROACHES

Year 2023, , 932 - 950, 28.12.2023
https://doi.org/10.29109/gujsc.1334651

Abstract

Fuel cells are known as eco-friendly systems considering that only water is produced as a secondary product due to energy-producing reactions. However in order to increase the commercial usage of fuel cells, it is necessary to decrease the costs of the catalysts. In recent studies on alternative energy systems microbial fuel cell systems (MFC) with their basic structure and system allowing wastewater treatment, rise to notice. Inorganic molecules as catalysts and microorganisms instead of enzymes are used in MFCs. A majority of the catalysts are wasted in the traditional catalysts coating methods. The control of the particle size of the Pt is derived by using different powers in the coating process. The Pt-coated carbon electrodes are tested both within a Proton Exchange Membrane Fuel Cell (PEMFC) and MFC. In this study used oxidation bacteria Thiobacillus ferrooxidans on the cathode and mixed culture bacteria on the anode of MFC. As a result of using these electrodes the conductivity and ultimately the performance is increased. The performances of both fuel cell systems are investigated with electrochemical measurements. Moreover, the electron transfer mechanism at the cathode is clarified by examining the porphyrin structure of Thiobacillus ferrooxidans via quantum mechanical methods.

References

  • [1] Prasad, D., Sivaram, T. K., Berchmans, S., & Yegnaraman, V., Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent, Journal of Power Sources, 160(2), (2006) 991-996. https://doi.org/10.1016/j.jpowsour.2006.02.051
  • [2] Ter Heijne, A., Hamelers, H. V., De Wilde, V., Rozendal, R. A., & Buisman, C. J., A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells, Environmental science & technology, 40(17), (2007) 5200-5205. https://doi.org/10.1021/es0608545
  • [3] von Heijne, G., Membrane-protein topology, Nature reviews Molecular cell biology, 7(12), (2006) 909-918. https://doi.org/10.1038/nrm2063
  • [4] Rawlings, D.E., & Kusano, T., Molecular genetics of Thiobacillus ferrooxidans. Microbiological Reviews, 58(1), (1994) 39-55. https://doi.org/10.1128/mr.58.1.39-55.1994
  • [5] Derya Yüksel Köseoğlu, Microbiological Iron Removal (Master Thesis-Environmental Engineering-Gebze Technical University) (2005) [6] Rzhepishevska, O., Physiology and Genetics of Acidithiobacillus species: Applications for Biomining (Doctoral dissertation, Molekylärbiologi (Teknisk-naturvetenskaplig fakultet)) (2008). [7] Barrett, M. L., Harvey, I., Sundararajan, M., Surendran, R., Hall, J. F., Ellis, M. J., ... & Hasnain, S. S., Atomic resolution crystal structures, EXAFS, and quantum chemical studies of rusticyanin and its two mutants provide insight into its unusual properties, Biochemistry, 45(9), (2006) 2927-2939.
  • https://doi.org/10.1021/bi052372w
  • [8] http://www.biophysics.liv.ac.uk/images/rusti_ribbon.jpg
  • [9] Abergel, C., Nitschke, W., Malarte, G., Bruschi, M., Claverie, J. M., & Giudici-Orticoni, M.T., The structure of Acidithiobacillus ferrooxidans c4-cytochrome: a model for complex-induced electron transfer tuning, Structure, 11(5), (2003) 547-555.
  • DOI 10.1016/S0969-2126(03)00072-8
  • [10] Schrader, J. A., & Holmes, D.S., Phenotypic switching of Thiobacillus ferrooxidans, Journal of bacteriology, 170(9), (1988) 3915-3923.
  • https://doi.org/10.1128/jb.170.9.3915-3923.1988
  • [11] Harrison Jr, A.P., The acidophilic thiobacilli and other acidophilic bacteria that share their habitat, Annual review of microbiology, 38(1), (1984) 265-292.
  • doi: 10.1146/annurev.mi.38.100184.001405
  • [12] Lurie, K. A., & Cherkaev, A.V., G-closure of a set of anisotropically conducting media in the two-dimensional case, Journal of optimization theory and applications, 42, (1984) 283-304.
  • https://doi.org/10.1007/BF00934300
  • [13] Nemati, M., & Webb, C., Combined biological and chemical oxidation of ferrous sulfate using immobilised Thiobacillus ferrooxidans, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 74(6), (1999) 562-570.
  • https://doi.org/10.1002/(SICI)1097-4660
There are 17 citations in total.

Details

Primary Language English
Subjects Electrochemistry
Journal Section Tasarım ve Teknoloji
Authors

Işılay Bilgiç 0000-0002-8822-2227

Early Pub Date November 4, 2023
Publication Date December 28, 2023
Submission Date July 29, 2023
Published in Issue Year 2023

Cite

APA Bilgiç, I. (2023). THE ANALYSIS OF ELECTRON TRANSFER MECHANISM WITHIN FUEL CELL SYSTEMS: ELECTROCHEMICAL AND MICROBIAL APPROACHES. Gazi University Journal of Science Part C: Design and Technology, 11(4), 932-950. https://doi.org/10.29109/gujsc.1334651

                                     16168      16167     16166     21432        logo.png


    e-ISSN:2147-9526