Research Article
BibTex RIS Cite

Radicut'ın Sıçan Dalağındaki Valproik Asite Bağlı Oksidatif Streste Potansiyel Koruyucu Rolü

Year 2024, Issue: 22, 308 - 319, 30.04.2024
https://doi.org/10.38079/igusabder.1348285

Abstract

Amaç: Çalışma, sıçanların dalak dokularında Valproik asitin (VPA) neden olduğu oksidatif streste Radikutun (RAD) potansiyel koruyucu rolünü değerlendirmeyi amaçlamaktadır.
Yöntem: Sıçanlar belirtildiği gibi gruplara ayrılmıştır: Grup 1: Kontrol (n=8), Grup II: R: RAD verilen grup (30 mg/kg/gün, n=8), Grup III: V: VPA verilen grup (0,5 g/kg/gün, n=10), Grup IV: V+R: VPA+ RAD verilen grup (30 mg/kg/gün, n=11). Hayvanlara 7 gün süreyle (i.p) VPA, RAD ve VPA+RAD verildi. Oksidatif stresle ilgili biyokimyasal parametreler dalak homojenatlarında tayin edildi.
Bulgular: VPA, dalakta lipid peroksidasyon ve siyalik asit seviyelerini yükselterek, alkalen fosfataz aktivitesini artırarak ve süperoksit dismutaz, glutatyon s transferaz ve glutatyon peroxidaz aktivitelerini azaltarak oksidatif stresi yükseltmiştir. VPA verilen gruba RAD uygulanması, LPO, SA ve asit fosfataz düzeylerini azaltırken, doku faktörü, SOD, GST ve GPx aktivitelerini artırdı.
Sonuç: RAD, koruyucu etkisini göstererek VPA verilen gruptaki biyokimyasal sonuçları normale çevirdi. RAD, VPA tedavisi sırasında yararlı olabilecek oksidatif stresi önleme potansiyeline sahiptir.

References

  • 1. Tunali S. The effects of vitamin B6 on lens antioxidant system in valproic acid-administered rats. Hum Exp Toxicol. 2014;33:623-628.
  • 2. Soria-Castro R, Chávez-Blanco AD, García-Pérez BE, et al. Valproic acid inhibits interferon-γ production by NK cells and increases susceptibility to Listeria monocytogenes infection. Sci Rep. 2020;10:1-14.
  • 3. Higashi Y, Jitsuiki D, Chayama K, Yoshizumi M. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a novel free radical scavenger, for treatment of cardiovascular diseases. Recent Pat Cardiovasc Drug Discov. 2006;1:85-93.
  • 4. Cakmak NH, Yanardag R. Edaravone, a free radical scavenger, protects liver against valproic acid induced toxicity. J Serb Chem Soc. 2015;80:627-637.
  • 5. Nolte MA, Hamann A, Kraal G, Mebius RE. The strict regulation of lymphocyte migration to splenic white pulp does not involve common homing receptors. Immunology. 2010;106:299-307.
  • 6. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5:606-616.
  • 7. Espandiari P, Zhang J, Schnackenberg LK, et al. Age‐related differences in susceptibility to toxic effects of valproic acid in rats. J Appl Toxicol. 2008;28:628-637.
  • 8. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-275.
  • 9. Yagi K. Assay for blood plasma or serum. Methods Enzymol. 1984;105:328-337.
  • 10. Warren L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959;234:1971-1975.
  • 11. Beutler E. Gluthatione in red blood cell metabolism: In: Red Cell Metabolism. A Manual Biochemical Methods. New York: Grune and Stratton; 1975; pp. 112-4.
  • 12. Walter K, Schült C. Acid and alkaline phosphatase in serum (two point method). In: Methods of Enzymatic Analysis Ed: Bergmeyer HU, 2nd ed. FL, 1974;856-86.
  • 13. Ingram GIC, Hills M. Reference method for the one stage prothrombin time test on human blood. Thromb Haemostas. 1976;36:237-238.
  • 14. Mylorie AA, Collins H, Umbles C, Kyle J. Erythrocyte SOD activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986;82:512-520.
  • 15. Habig WH, Jacoby WB. Assays for differentation of glutathione-s-transferases. Methods in Enzymol. 1981;77:398-405.
  • 16. Paglia DE, Valentine WN. Studies on the quantitative and quantitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158-168.
  • 17. Aebi H. Catalase in vitro. Methods in Enzymol. 1984;105:121-126.
  • 18. Gayam V, Mandal AK, Khalid M, Shrestha B, Garlapati P, Khalid M. Valproic acid induced acute liver injury resulting in hepatic encephalopathy-a case report and literature review. J Community Hosp Intern Med Perspect. 2018;8:311-314.
  • 19. Cengiz M, Yüksel A, Seven M. The effects of carbamazepine and valproic acid on the erythrocyte glutathione, glutathione peroxidase, superoxide dismutase and serum lipid peroxidation in epileptic children. Pharmacol Res. 2000;41:423-425.
  • 20. Messaoudi I, El Heni J, Hammouda F, Saïd K, Kerkeni A. Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res. 2009;130:152-161.
  • 21. Tong V, Teng XW, Chang TK, Abbott FS. Valproic acid I: time course of lipid peroxidation biomarkers, liver toxicity, and valproic acid metabolite levels in rats. Toxicol Sci. 2005;86:427-435.
  • 22. Chaudhary S, Ganjoo P, Raiusddin S, Parvez S. Nephroprotective activities of quercetin with potential relevance to oxidative stress induced by valproic acid. Protoplasma. 2015;252:209-217.
  • 23. Sokmen BB, Tunali S, Yanardag R. Effects of vitamin U (S-methyl methionine sulphonium chloride) on valproic acid induced liver injury in rats. Food Chem Toxicol. 2012;50:3562-3566.
  • 24. Schauer R, Kamerling JP. Exploration of the sialic acid world. Adv Carbohydr Chem Biochem. 2018;75:1-213.
  • 25. Oktay S, Alev B, Tunali S, et al. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine. Hum Exp Toxicol. 2015;34:654-61.
  • 26. Ustundag UV, Tunali S, Alev B, et al. Effects of Chard (Beta Vulgaris L. Var. Cicla) on cardiac damage in valproic acid–induced toxicity. J Food Biochem. 2016;40:132-139.
  • 27. Pastore A, Piemonte F, Locatelli M, et al. Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clin Chem. 2001;47:1467-1469.
  • 28. Oktay S, Alev B, Ozturk LK, et al. Edaravone ameliorates valproate-induced gingival toxicity by reducing oxidative-stress, inflammation and tissue damage. Marmara Pharm J. 2016;20:243-251.
  • 29. Çelik Ç, Bayrak BB, Hacıhasanoğlu Çakmak N, Yanardağ R. Protective effect of edaravone on rat testis after valproic acid treatment. J Res Pharm. 2022;26:52-62.
  • 30. Haarhaus M, Brandenburg V, Kalantar-Zadeh K, Stenvinkel P, Magnusson P. Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol. 2017;13(7):429-442.
  • 31. Camerer E, Huang W, Coughlin SR. Tissue factor-and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. PNAS. 2000;97:5255-5260.
  • 32. Farag MR, Moselhy AAA, El-Mleeh A, et al. Quercetin alleviates the immunotoxic impact mediated by oxidative stress and inflammation induced by doxorubicin exposure in rats. Antioxidants (Basel). 2021;10(12):1906. doi: 10.3390/antiox10121906.
  • 33. Cárdenas-Rodríguez N, Coballase-Urrutia E, Rivera-Espinosa L, et al. Modulation of antioxidant enzymatic activities by certain antiepileptic drugs (valproic acid, oxcarbazepine, and topiramate): evidence in humans and experimental models. Oxid Med Cell Longev. 2013;2013. doi: 10.1155/2013/598493.
  • 34. Kurekci AE, Alpay F, Tanindi S, et al. Plasma trace element, plasma glutathione peroxidase, and superoxide dismutase levels in epileptic children receiving antiepileptic drug therapy. Epilepsia. 1995;36:600-604.
  • 35. Chaudhary S, Parvez S. An in vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats. Neurosci. 2012;225:258-268.
  • 36. Yis U, Seckin E, Kurul SH, Kuralay F, Dirik E. Effects of epilepsy and valproic acid on oxidant status in children with idiopathic epilepsy. Epilepsy Res. 2009;84:232-237.
  • 37. Aranarochana A, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Melatonin ameliorates valproic acid-induced neurogenesis impairment: The role of oxidative stress in adult rats. Oxid Med Cell Longev. 2021:2021. doi: 10.1155/2021/9997582.
  • 38. Turkyilmaz IB, Altas N, Arisan I, Yanardag R. Effect of vitamin B6 on brain damage in valproic acid induced toxicity. J Biochem Mol Toxicol. 2021;35:e22855. doi: 10.1002/jbt.22855.
  • 39. Tajima S, Bando M, Ishii Y, et al. Effects of edaravone, a free-radical scavenger, on bleomycin-induced lung injury in mice. Eur Respir J. 2008;32:1337-1343.

Potential Protective Role of Radicut in Valproic Acid-Induced Oxidative Stress in Rat Spleen

Year 2024, Issue: 22, 308 - 319, 30.04.2024
https://doi.org/10.38079/igusabder.1348285

Abstract

Aim: The study aims to evaluate the potential protective role of Radicut (RAD) in Valproic acid (VPA)-induced oxidative stress in splenic tissues of rats.
Method: Rats were divided into groups as follows: Group 1: Controls (n=8), Group II: R: RAD-given group (30 mg/kg/day, n=8), Group III: V: VPA-given group (0.5 g/kg/day, n=10), Group IV: V+R: VPA+RAD-given group (30 mg/kg/day, n=11). VPA, RAD, and VPA+RAD were given to the animals for 7 days (i.p). Biochemical parameters related to oxidative stress were determined in spleen homogenates.
Results: VPA elevated oxidative stress by increasing lipid peroxidation and sialic acid levels, increasing alkaline phosphatase activity, and decreasing superoxide dismutase, glutathione-S- transferase, and glutathione peroxidase activities. Administration of RAD to VPA-given group decreased LPO, SA levels, and acid phosphatase levels, and increased tissue factor, SOD, GST, and GPx activities.
Conclusion: RAD reversed the biochemical results in the V group, by clarifying its protective effect. RAD has the potential to prevent oxidative stress during VPA treatment, which could be beneficial.

References

  • 1. Tunali S. The effects of vitamin B6 on lens antioxidant system in valproic acid-administered rats. Hum Exp Toxicol. 2014;33:623-628.
  • 2. Soria-Castro R, Chávez-Blanco AD, García-Pérez BE, et al. Valproic acid inhibits interferon-γ production by NK cells and increases susceptibility to Listeria monocytogenes infection. Sci Rep. 2020;10:1-14.
  • 3. Higashi Y, Jitsuiki D, Chayama K, Yoshizumi M. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a novel free radical scavenger, for treatment of cardiovascular diseases. Recent Pat Cardiovasc Drug Discov. 2006;1:85-93.
  • 4. Cakmak NH, Yanardag R. Edaravone, a free radical scavenger, protects liver against valproic acid induced toxicity. J Serb Chem Soc. 2015;80:627-637.
  • 5. Nolte MA, Hamann A, Kraal G, Mebius RE. The strict regulation of lymphocyte migration to splenic white pulp does not involve common homing receptors. Immunology. 2010;106:299-307.
  • 6. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5:606-616.
  • 7. Espandiari P, Zhang J, Schnackenberg LK, et al. Age‐related differences in susceptibility to toxic effects of valproic acid in rats. J Appl Toxicol. 2008;28:628-637.
  • 8. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-275.
  • 9. Yagi K. Assay for blood plasma or serum. Methods Enzymol. 1984;105:328-337.
  • 10. Warren L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959;234:1971-1975.
  • 11. Beutler E. Gluthatione in red blood cell metabolism: In: Red Cell Metabolism. A Manual Biochemical Methods. New York: Grune and Stratton; 1975; pp. 112-4.
  • 12. Walter K, Schült C. Acid and alkaline phosphatase in serum (two point method). In: Methods of Enzymatic Analysis Ed: Bergmeyer HU, 2nd ed. FL, 1974;856-86.
  • 13. Ingram GIC, Hills M. Reference method for the one stage prothrombin time test on human blood. Thromb Haemostas. 1976;36:237-238.
  • 14. Mylorie AA, Collins H, Umbles C, Kyle J. Erythrocyte SOD activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986;82:512-520.
  • 15. Habig WH, Jacoby WB. Assays for differentation of glutathione-s-transferases. Methods in Enzymol. 1981;77:398-405.
  • 16. Paglia DE, Valentine WN. Studies on the quantitative and quantitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158-168.
  • 17. Aebi H. Catalase in vitro. Methods in Enzymol. 1984;105:121-126.
  • 18. Gayam V, Mandal AK, Khalid M, Shrestha B, Garlapati P, Khalid M. Valproic acid induced acute liver injury resulting in hepatic encephalopathy-a case report and literature review. J Community Hosp Intern Med Perspect. 2018;8:311-314.
  • 19. Cengiz M, Yüksel A, Seven M. The effects of carbamazepine and valproic acid on the erythrocyte glutathione, glutathione peroxidase, superoxide dismutase and serum lipid peroxidation in epileptic children. Pharmacol Res. 2000;41:423-425.
  • 20. Messaoudi I, El Heni J, Hammouda F, Saïd K, Kerkeni A. Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res. 2009;130:152-161.
  • 21. Tong V, Teng XW, Chang TK, Abbott FS. Valproic acid I: time course of lipid peroxidation biomarkers, liver toxicity, and valproic acid metabolite levels in rats. Toxicol Sci. 2005;86:427-435.
  • 22. Chaudhary S, Ganjoo P, Raiusddin S, Parvez S. Nephroprotective activities of quercetin with potential relevance to oxidative stress induced by valproic acid. Protoplasma. 2015;252:209-217.
  • 23. Sokmen BB, Tunali S, Yanardag R. Effects of vitamin U (S-methyl methionine sulphonium chloride) on valproic acid induced liver injury in rats. Food Chem Toxicol. 2012;50:3562-3566.
  • 24. Schauer R, Kamerling JP. Exploration of the sialic acid world. Adv Carbohydr Chem Biochem. 2018;75:1-213.
  • 25. Oktay S, Alev B, Tunali S, et al. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine. Hum Exp Toxicol. 2015;34:654-61.
  • 26. Ustundag UV, Tunali S, Alev B, et al. Effects of Chard (Beta Vulgaris L. Var. Cicla) on cardiac damage in valproic acid–induced toxicity. J Food Biochem. 2016;40:132-139.
  • 27. Pastore A, Piemonte F, Locatelli M, et al. Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clin Chem. 2001;47:1467-1469.
  • 28. Oktay S, Alev B, Ozturk LK, et al. Edaravone ameliorates valproate-induced gingival toxicity by reducing oxidative-stress, inflammation and tissue damage. Marmara Pharm J. 2016;20:243-251.
  • 29. Çelik Ç, Bayrak BB, Hacıhasanoğlu Çakmak N, Yanardağ R. Protective effect of edaravone on rat testis after valproic acid treatment. J Res Pharm. 2022;26:52-62.
  • 30. Haarhaus M, Brandenburg V, Kalantar-Zadeh K, Stenvinkel P, Magnusson P. Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol. 2017;13(7):429-442.
  • 31. Camerer E, Huang W, Coughlin SR. Tissue factor-and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. PNAS. 2000;97:5255-5260.
  • 32. Farag MR, Moselhy AAA, El-Mleeh A, et al. Quercetin alleviates the immunotoxic impact mediated by oxidative stress and inflammation induced by doxorubicin exposure in rats. Antioxidants (Basel). 2021;10(12):1906. doi: 10.3390/antiox10121906.
  • 33. Cárdenas-Rodríguez N, Coballase-Urrutia E, Rivera-Espinosa L, et al. Modulation of antioxidant enzymatic activities by certain antiepileptic drugs (valproic acid, oxcarbazepine, and topiramate): evidence in humans and experimental models. Oxid Med Cell Longev. 2013;2013. doi: 10.1155/2013/598493.
  • 34. Kurekci AE, Alpay F, Tanindi S, et al. Plasma trace element, plasma glutathione peroxidase, and superoxide dismutase levels in epileptic children receiving antiepileptic drug therapy. Epilepsia. 1995;36:600-604.
  • 35. Chaudhary S, Parvez S. An in vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats. Neurosci. 2012;225:258-268.
  • 36. Yis U, Seckin E, Kurul SH, Kuralay F, Dirik E. Effects of epilepsy and valproic acid on oxidant status in children with idiopathic epilepsy. Epilepsy Res. 2009;84:232-237.
  • 37. Aranarochana A, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Melatonin ameliorates valproic acid-induced neurogenesis impairment: The role of oxidative stress in adult rats. Oxid Med Cell Longev. 2021:2021. doi: 10.1155/2021/9997582.
  • 38. Turkyilmaz IB, Altas N, Arisan I, Yanardag R. Effect of vitamin B6 on brain damage in valproic acid induced toxicity. J Biochem Mol Toxicol. 2021;35:e22855. doi: 10.1002/jbt.22855.
  • 39. Tajima S, Bando M, Ishii Y, et al. Effects of edaravone, a free-radical scavenger, on bleomycin-induced lung injury in mice. Eur Respir J. 2008;32:1337-1343.
There are 39 citations in total.

Details

Primary Language English
Subjects Medical Biochemistry and Metabolomics (Other)
Journal Section Articles
Authors

Nihal Şehkar Oktay 0000-0002-2878-288X

Burcin Alev Tüzüner 0000-0001-5122-4977

Sevim Tunalı 0000-0003-3363-1290

Ebru Emekli Alturfan 0000-0003-2419-8587

Tuğba Tunalı-akbay 0000-0002-2091-9298

Refiye Yanardağ 0000-0003-4185-4363

Ayşen Yarat 0000-0002-8258-6118

Early Pub Date April 27, 2024
Publication Date April 30, 2024
Acceptance Date March 19, 2024
Published in Issue Year 2024 Issue: 22

Cite

JAMA Oktay NŞ, Alev Tüzüner B, Tunalı S, Emekli Alturfan E, Tunalı-akbay T, Yanardağ R, Yarat A. Potential Protective Role of Radicut in Valproic Acid-Induced Oxidative Stress in Rat Spleen. IGUSABDER. 2024;:308–319.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)