Research Article
BibTex RIS Cite
Year 2023, , 1 - 5, 30.06.2023
https://doi.org/10.32571/ijct.1199967

Abstract

References

  • 1. Razi, F.; Dincer, I. Renew. Sustain. Energy Rev. 2022, 168, 112763- 112775.
  • 2. Qureshi, F.; Yusuf, M.; Kamyab H.; Zaidi, S. Khalil M. J.; Khan, M. A.; Alam, M.A.; Masood F.; Bazli, L.; Chelliapan.; Abdullah, B. Sustain. Energy Technol. Assess. 2022, 53, 102677-102694.
  • 3. Wang, S.; Wu, X.; Jafarmadar S.; Singh, P.K.; Khorasani, S.; Marefati, M.; Alizadeh, A. J. Energy Storage 2022, 54, 105274- 105290.
  • 4. Zahedi, R.; Ghodusinejad, M. H.; Aslani, A.; Hachem-Vermette, C. Energy Strategy Rev. 2022, 43, 100930-100946.
  • 5. Ang, T-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. Energy Strategy Rev. 43, 2022, 100939-100964.
  • 6. Balun Kayan, D.; Baran, T.; Menteş, A. Electrochim. Acta, 2022, 422, 140513-140520.
  • 7. Yu, Z-Y.; Duan, Y.; Feng, X-Y.; Yu, X.; Gao, M-R.; Yu, S-H. Adv. Mater. 2021, 33, 2007100-20071034. 8. Ahmed, S. F.; Mofijur, M.; Nuzhat, S.; Rafa, N.; Musharrat, A.; Lam, S.S.; Boretti, A. Int. J. Hydrog. Energy, 2022, 47(88), 37227-37255
  • 9. Vıdas, Leonardo; Castro, Rui. Applied Sciences, 2021, 11(23), 11363-11389. 10. Kamaroddin, M.F.A.; Sabli, N.; Abdullah T.A.T.; Siajam, S.I.; Abdullah, L.C.; Jalil A.A.; Ahmad, A. Membranes, 2021, 11(810), 1-28.
  • 11. Yao, R-Q.; Zhou, Y-T.; Shi, H.; Wan, W-B.; Zhang, Q-H.; Gu, L.; Zhu, Y-F.; Wen, Z.; Lang, X-Y.; Jiang, Q. Adv. Func. Mat. 2021, 31(10), 2009613-2009621.
  • 12. Liu, C.; Song, H.; Dai, Z.; Xiong, Y. Ionics, 2022, 28(3), 1311-1321.
  • 13. Cao, Z.; Song, H.; Liu, C.; Tang, W.; Liu J.; Yang, B.; Xie, W.; Yu, Z. Electrocatalysis, 2022, 13, 807–817.
  • 14. Kumar, S.S.; Lim, H. Energy Reports, 2022, 8, 13793-13813.
  • 15. Theerthagiri, J.; Lee, S. J.; Murthy, A.P.; Madhavan, J.; Choi, M.Y. Curr. Opin. Solid State Mater. Sci. 2020, 24(1), 100805-100826.
  • 16. Wu, T.; Sun, M.Z.; Huang, B.L. Rare Metals, 2022, 41, 2169-2183
  • 17. Ji, L.; Lv, C.; Chen, Z.; Huang, Z.; Zhang, C. Adv. Mater. 2018, 30(17), 1705653-1705659.
  • 18. Chen, Z.; Wei, W.; Ni, B.J. Curr. Opin. Green Sustain. Chem. 2021, 27, 100398-100405.
  • 19. Wu, H.; Feng, C.; Zhang, L.; Zhang, J.; Wilkinson, D.P. Electrochem. Energy Reviews 2021, 4(3), 473-507.
  • 20. Guo, M.; Song, S.; Zhang, S.; Yan, Y.; Zhan, K.; Yang, J.; Zhao, B. ACS Sustain. Chem. Eng. 2020, 8(19), 7436-7444.
  • 21. Trasatti, S. J. Electroanal. Chem. 1972, 39, 163-184.
  • 22. Jin, H.; Liu, X.; Chen, S.; Vasileff, A.; Li, L.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S-Z.; ACS Energy Lett. 2019, 4, 4, 805-810
  • 23. Chang, H.; Shi, L.N.; Chen, Y.H.; Wang, P.F.; Yi, T.F. Coord. Chem. Rev. 2022, 473, 214839-214870.
  • 24. Zaher, A.; El Rouby, W.M.; Barakat, N.A. Fuel, 2020, 280, 118654.
  • 25. Liu, G.; Hou, F.; Peng, S.; Wang, X.; Fang, B. Nanomaterials 2022, 12(17), 2935-2947.
  • 26. Askari, M.B.; Rozati, S.M.; Salarizadeh, P.; Azizi, S. Ceramics International, 2022 48(11), 16123-16130.
  • 27. Karimi, A.; Kazeminezhad, I.; Naderi, L.; Shahrokhian, S. J. Phys. Chem. C., 2020, 124(8), 4393-4407.
  • 28. Wan, Z., Bai, X., Mo, H., Yang, J., Wang, Z., Zhou, L. Colloids Surf A Physicochem Eng Asp. 2021, 614, 126048-126059.
  • 29. Zhao, X.; Luo, D.; Wang, Y.; Liu, Z.H. Nano Res. 2019, 12(11), 2872-2880.
  • 30. Xu, Q.; Zang L.; Li, Z.; Shen, F.; Zhang, Y.; Sun, L.; Int. J. Hydrog. Energy, 2022, 47(91), 38571-38582.
  • 31. Wu, J.; Wang, J.; Huang, X.; Bai, H. Energy Environ. Sci. 2018, 11(5), 1280-1286.
  • 32. Rafiee, M.; Nitzsche, F.; Laliberte, J.; Hind, S.; Robitaille, F.; Labrosse, M.R. Compos. B: Eng. 2019, 164, 1-9.
  • 33. Qian, H.; Wang, J.; Yan, L. J. Bioresour. Bioprod. 2020, 5(3), 204-210.
  • 34. Nairan, A.; Liang, C.; Chiang, S.W.; Wu, Y.; Zou, P.; Khan, U.; Liu, W.; Kang F.; Guo S.; Wu, J.; Yang, C. Energy Environ. Sci. 2021, 14(3), 1594-1601.
  • 35. Murthy, A.P.; Theerthagiri, J.; Madhavan, J. J. Phys. Chem. C. 2018, 122(42), 23943-23949.
  • 36. Wu, L.; Hoof, A. J. F.; Dzade N.Y.; Gao L.; Richard M-I.; Friedrich H.; Leeuw N.H.D.; Hensen E.J.M.; Hofmann J. P. Phys. Chem. Chem. Phys. 2019, 21, 6071-6079.
  • 37. Najafi, L.;, Bellani, S.; Oropesa-Nuñez, R.; Ansaldo, A.; Prato M.; Castillo, A. E. D.R.; Bonaccorso F. Adv. Energy Mater. 2018, 8, 1703212-1703227.
  • 38. Zeng M.; Li, Y. J. Mater. Chem. A, 2015,3, 14942-14962
  • 39. Balun Kayan, D.; İlhan, M.; Koçak, D. Ionics, 2018, 24(2), 563-569.
  • 40. Wang, X.; Zhou, H.; Zhang, D.; Pi, M.; Feng, J.; Chen, S. J. Power Sources. 2018, 387, 1-8.

Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite

Year 2023, , 1 - 5, 30.06.2023
https://doi.org/10.32571/ijct.1199967

Abstract

The development of inexpensive and effective electrocatalyses are all-important for hydrogen production from water electrolysis. In this study, a facile design of a reduced graphene oxide (rGO) based electrocatalyst decorated with nickel nanoparticles is described. The voltammetric results and the hydrogen evolution reaction (HER) kinetics showed that the as-prepared nanocomposite is an effective and stable electrocatalyst for hydrogen production with a small Tafel slope of 152 mVdec-1 and long-term continuous durability (over 24 h) in 0.5 M H2SO4 solution. Also, the enhanced HER activity was confirmed by characterization results with the porous/greater electroactive surface area. The remarkable increase in electrocatalytic activity was due to the surface roughness and the synergetic chemical coupling effects between rGO and Ni nanoparticles.

References

  • 1. Razi, F.; Dincer, I. Renew. Sustain. Energy Rev. 2022, 168, 112763- 112775.
  • 2. Qureshi, F.; Yusuf, M.; Kamyab H.; Zaidi, S. Khalil M. J.; Khan, M. A.; Alam, M.A.; Masood F.; Bazli, L.; Chelliapan.; Abdullah, B. Sustain. Energy Technol. Assess. 2022, 53, 102677-102694.
  • 3. Wang, S.; Wu, X.; Jafarmadar S.; Singh, P.K.; Khorasani, S.; Marefati, M.; Alizadeh, A. J. Energy Storage 2022, 54, 105274- 105290.
  • 4. Zahedi, R.; Ghodusinejad, M. H.; Aslani, A.; Hachem-Vermette, C. Energy Strategy Rev. 2022, 43, 100930-100946.
  • 5. Ang, T-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. Energy Strategy Rev. 43, 2022, 100939-100964.
  • 6. Balun Kayan, D.; Baran, T.; Menteş, A. Electrochim. Acta, 2022, 422, 140513-140520.
  • 7. Yu, Z-Y.; Duan, Y.; Feng, X-Y.; Yu, X.; Gao, M-R.; Yu, S-H. Adv. Mater. 2021, 33, 2007100-20071034. 8. Ahmed, S. F.; Mofijur, M.; Nuzhat, S.; Rafa, N.; Musharrat, A.; Lam, S.S.; Boretti, A. Int. J. Hydrog. Energy, 2022, 47(88), 37227-37255
  • 9. Vıdas, Leonardo; Castro, Rui. Applied Sciences, 2021, 11(23), 11363-11389. 10. Kamaroddin, M.F.A.; Sabli, N.; Abdullah T.A.T.; Siajam, S.I.; Abdullah, L.C.; Jalil A.A.; Ahmad, A. Membranes, 2021, 11(810), 1-28.
  • 11. Yao, R-Q.; Zhou, Y-T.; Shi, H.; Wan, W-B.; Zhang, Q-H.; Gu, L.; Zhu, Y-F.; Wen, Z.; Lang, X-Y.; Jiang, Q. Adv. Func. Mat. 2021, 31(10), 2009613-2009621.
  • 12. Liu, C.; Song, H.; Dai, Z.; Xiong, Y. Ionics, 2022, 28(3), 1311-1321.
  • 13. Cao, Z.; Song, H.; Liu, C.; Tang, W.; Liu J.; Yang, B.; Xie, W.; Yu, Z. Electrocatalysis, 2022, 13, 807–817.
  • 14. Kumar, S.S.; Lim, H. Energy Reports, 2022, 8, 13793-13813.
  • 15. Theerthagiri, J.; Lee, S. J.; Murthy, A.P.; Madhavan, J.; Choi, M.Y. Curr. Opin. Solid State Mater. Sci. 2020, 24(1), 100805-100826.
  • 16. Wu, T.; Sun, M.Z.; Huang, B.L. Rare Metals, 2022, 41, 2169-2183
  • 17. Ji, L.; Lv, C.; Chen, Z.; Huang, Z.; Zhang, C. Adv. Mater. 2018, 30(17), 1705653-1705659.
  • 18. Chen, Z.; Wei, W.; Ni, B.J. Curr. Opin. Green Sustain. Chem. 2021, 27, 100398-100405.
  • 19. Wu, H.; Feng, C.; Zhang, L.; Zhang, J.; Wilkinson, D.P. Electrochem. Energy Reviews 2021, 4(3), 473-507.
  • 20. Guo, M.; Song, S.; Zhang, S.; Yan, Y.; Zhan, K.; Yang, J.; Zhao, B. ACS Sustain. Chem. Eng. 2020, 8(19), 7436-7444.
  • 21. Trasatti, S. J. Electroanal. Chem. 1972, 39, 163-184.
  • 22. Jin, H.; Liu, X.; Chen, S.; Vasileff, A.; Li, L.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S-Z.; ACS Energy Lett. 2019, 4, 4, 805-810
  • 23. Chang, H.; Shi, L.N.; Chen, Y.H.; Wang, P.F.; Yi, T.F. Coord. Chem. Rev. 2022, 473, 214839-214870.
  • 24. Zaher, A.; El Rouby, W.M.; Barakat, N.A. Fuel, 2020, 280, 118654.
  • 25. Liu, G.; Hou, F.; Peng, S.; Wang, X.; Fang, B. Nanomaterials 2022, 12(17), 2935-2947.
  • 26. Askari, M.B.; Rozati, S.M.; Salarizadeh, P.; Azizi, S. Ceramics International, 2022 48(11), 16123-16130.
  • 27. Karimi, A.; Kazeminezhad, I.; Naderi, L.; Shahrokhian, S. J. Phys. Chem. C., 2020, 124(8), 4393-4407.
  • 28. Wan, Z., Bai, X., Mo, H., Yang, J., Wang, Z., Zhou, L. Colloids Surf A Physicochem Eng Asp. 2021, 614, 126048-126059.
  • 29. Zhao, X.; Luo, D.; Wang, Y.; Liu, Z.H. Nano Res. 2019, 12(11), 2872-2880.
  • 30. Xu, Q.; Zang L.; Li, Z.; Shen, F.; Zhang, Y.; Sun, L.; Int. J. Hydrog. Energy, 2022, 47(91), 38571-38582.
  • 31. Wu, J.; Wang, J.; Huang, X.; Bai, H. Energy Environ. Sci. 2018, 11(5), 1280-1286.
  • 32. Rafiee, M.; Nitzsche, F.; Laliberte, J.; Hind, S.; Robitaille, F.; Labrosse, M.R. Compos. B: Eng. 2019, 164, 1-9.
  • 33. Qian, H.; Wang, J.; Yan, L. J. Bioresour. Bioprod. 2020, 5(3), 204-210.
  • 34. Nairan, A.; Liang, C.; Chiang, S.W.; Wu, Y.; Zou, P.; Khan, U.; Liu, W.; Kang F.; Guo S.; Wu, J.; Yang, C. Energy Environ. Sci. 2021, 14(3), 1594-1601.
  • 35. Murthy, A.P.; Theerthagiri, J.; Madhavan, J. J. Phys. Chem. C. 2018, 122(42), 23943-23949.
  • 36. Wu, L.; Hoof, A. J. F.; Dzade N.Y.; Gao L.; Richard M-I.; Friedrich H.; Leeuw N.H.D.; Hensen E.J.M.; Hofmann J. P. Phys. Chem. Chem. Phys. 2019, 21, 6071-6079.
  • 37. Najafi, L.;, Bellani, S.; Oropesa-Nuñez, R.; Ansaldo, A.; Prato M.; Castillo, A. E. D.R.; Bonaccorso F. Adv. Energy Mater. 2018, 8, 1703212-1703227.
  • 38. Zeng M.; Li, Y. J. Mater. Chem. A, 2015,3, 14942-14962
  • 39. Balun Kayan, D.; İlhan, M.; Koçak, D. Ionics, 2018, 24(2), 563-569.
  • 40. Wang, X.; Zhou, H.; Zhang, D.; Pi, M.; Feng, J.; Chen, S. J. Power Sources. 2018, 387, 1-8.
There are 38 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Didem Balun Kayan 0000-0003-4297-5546

Early Pub Date September 7, 2023
Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Balun Kayan, D. (2023). Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite. International Journal of Chemistry and Technology, 7(1), 1-5. https://doi.org/10.32571/ijct.1199967
AMA Balun Kayan D. Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite. Int. J. Chem. Technol. June 2023;7(1):1-5. doi:10.32571/ijct.1199967
Chicago Balun Kayan, Didem. “Hydrogen Production via Water Electrolysis on an Active Electrocatalyst RGONi Nanocomposite”. International Journal of Chemistry and Technology 7, no. 1 (June 2023): 1-5. https://doi.org/10.32571/ijct.1199967.
EndNote Balun Kayan D (June 1, 2023) Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite. International Journal of Chemistry and Technology 7 1 1–5.
IEEE D. Balun Kayan, “Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite”, Int. J. Chem. Technol., vol. 7, no. 1, pp. 1–5, 2023, doi: 10.32571/ijct.1199967.
ISNAD Balun Kayan, Didem. “Hydrogen Production via Water Electrolysis on an Active Electrocatalyst RGONi Nanocomposite”. International Journal of Chemistry and Technology 7/1 (June 2023), 1-5. https://doi.org/10.32571/ijct.1199967.
JAMA Balun Kayan D. Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite. Int. J. Chem. Technol. 2023;7:1–5.
MLA Balun Kayan, Didem. “Hydrogen Production via Water Electrolysis on an Active Electrocatalyst RGONi Nanocomposite”. International Journal of Chemistry and Technology, vol. 7, no. 1, 2023, pp. 1-5, doi:10.32571/ijct.1199967.
Vancouver Balun Kayan D. Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite. Int. J. Chem. Technol. 2023;7(1):1-5.