Research Article
BibTex RIS Cite

Synthesis, Identification of Poly(N-vinyl-2-pyrrolidone) Stabilized Ru-Fe Nanoclusters and Investigation of the Catalytic Activity of Methylamine-Borane in the Hydrolysis Reaction

Year 2023, Volume: 13 Issue: 2, 1142 - 1154, 01.06.2023
https://doi.org/10.21597/jist.1271619

Abstract

Ru-Fe nanoparticles (Ru-Fe@PVP) stabilized with poly(N-vinyl-2-pyrrolidone) (PVP) were synthesized by a widely used alcohol reduction technique. The synthesized nanoparticles were characterized by SEM, SEM/EDX, UV/Vis techniques. The prepared nanoparticles were used as a catalyst in the production of hydrogen from the hydrolysis reaction of methylamine-borane, an important boron-nitrogen (B-N) derivative that stores hydrogen in solid state. Bimetallic nanoparticles, which were calculated as TOF (38.4 1/min) and activation energy (87.7 kJ/mol), were evaluated as an efficient catalytic system with these properties. As a result of the investigation of the effects of catalyst and substrate concentrations on the catalytic reaction, it was determined that the rate expression of the reaction progressed from 0.5 order according to the catalyst concentration and 1.7 order according to the substrate concentration.

References

  • Abay B., Rakap M. (2020). Eco-Friendly Synthesis of Carboxymethyl Cellulose-Stabilized Ru0.57Co0.43 Nanoclusters as Extremely Efficient and Durable Catalysts for Hydrolytic Dehydrogenation of Methylamine Borane. ACS Sustainable Chemistry & Engineering, 8 (43), 16197-16204.
  • Baguc, I. B., Ertas, I. E., Yurderi, M., Bulut, A., Zahmakiran, M., Kaya, M. (2018). Nanocrystalline metal organic framework (MIL-101) stabilized copper Nanoparticles: Highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane. Inorganica Chimica Acta, 483, 431-439.
  • Baguc, I. B., Yurderi, M., Bulut, A., Celebi, M., Kanberoglu, G. S., Zahmakiran, M., Kaya M., Aydemir M., Durap F., Baysal, A. (2019). Cobalt nanoparticles supported on alumina nanofibers (Co/Al2O3): Cost effective catalytic system for the hydrolysis of methylamine borane. International Journal of Hydrogen Energy, 44(53), 28441-28450.
  • Barapati, S., Mucherla R., Gade R., Somaiah, P.V. (2022). Photodegradation of Rhodamine B and Crystal Violet using Al-doped Co–Mn nanoferrites and dielectric study, Journal of Materials Science: Materials in Electronics 33, 25139-25152.
  • Chu H., Li N., Qiu X., Wang Y., Qiu S., Zeng J. L., Zou Y., Xu F., Su L. (2019). Poly(N-vinyl-2-pyrrolidone)-stabilized ruthenium supported on bamboo leaf-derived porous carbon for NH3BH3 hydrolysis. International Journal of Hydrogen Energy, 44, 29255-29262.
  • Cao, N., Su, J., Luo, W., & Cheng, G. (2014). Hydrolytic dehydrogenation of ammonia borane and methylamine borane catalyzed by graphene supported Ru@Ni core–shell nanoparticles. International Journal of Hydrogen Energy, 39(1), 426-435.
  • Cetin A., Korkmaz A., Erdoğan E., Kösemen A. (2019). A study on synthesis, optical properties and surface morphological of novel conjugated oligo-pyrazole films. Materials Chemistry and Physics, 222, 37-44.
  • Çelebi, M., Rüzgar, A., Karataş, Y., & Gülcan, M. (2022). Manganese oxide octahedral molecular sieves stabilized Rh nanoparticles for the hydrogen production from the ethylenediamine-bisborane hydrolysis. International Journal of Hydrogen Energy, 47(37), 16494-16506.
  • Dayan, O., Kilicer, A., Bulut, A., Ceylan, E., Tayfun, U., Uzun, O., Zahmakıran M., Yurderi, M. (2022). Pumice-Supported Ruthenium nanoparticles as highly effective and recyclable catalyst in the hydrolysis of methylamine borane. International Journal of Hydrogen Energy.
  • Du, Y., Cao, N., Yang, L., Luo, W., & Cheng, G. (2013). One-step synthesis of magnetically recyclable rGO supported Cu@Co core–shell nanoparticles: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane. New Journal of Chemistry, 37(10), 3035-3042.
  • Dutta, S., Gupta, B., Srivastava, S.K., Gupta, A.K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review, Materials Advances, 2, 4497-4531.
  • Fahmy H., Abo-Shosha M, Ibrahim N. A, (2009). Finishing of cotton fabrics with poly (N-vinyl-2-pyrrolidone) to improve their performance and antibacterial properties. Carbohydrate Polymers, 77(4), 845– 850.
  • Fahmy H, Okda H., Amr A. (2022). Preparation of poly (N-vinyl-2-pyrrolidone)/ammonium persulfate hydrogel embedded silver nanoparticles. Egyptian Journal of Chemistry, 65(9), 37-45.
  • Gülcan M., Karatas Y. (2017). Synthesized polyvidone-stabilized Rh(0) nanoparticles catalyzed the hydrolytic dehydrogenation of methylamine-borane in ambient conditions. New Journal Of Chemıstry, 41(20), 11839-11845.
  • Hafez H. S., Ali E. H., Abdelmottaleb M.S.A. (2005). Photocatalytic efficiency of titanium dioxide immobilized on PVP/AAc hydrogel membranes: a comparative study for safe disposal of wastewater of Remazol Red RB-133 textile dye. International Journal of Photoenergy, 7 (4), 181-185.
  • Hanley E. S., Deane J. P., Gallachóir B. P. O. (2018). The role of hydrogen in low carbon energy futures – a review of existing perspectives. Renew Sustain Energy Rev, 82, 3027-3045
  • Kanat, M., Karataş, Y., Gülcan, M., Anıl, B. (2018). Preparation and detailed characterization of zirconia nanopowder supported rhodium (0) nanoparticles for hydrogen production from the methanolysis of methylamine-borane in room conditions. International Journal of Hydrogen Energy, 43(50), 22548-22556.
  • Karatas Y., Acidereli H., Gulcan M., Sen F. (2020). A novel highly active and reusable carbon based platinum-ruthenium nanocatalyst for dimethylamine-borane dehydrogenation in water at room conditions. Scientific Reports, 10(1), 1-10.
  • Karatas Y., Cetin T., Akkus I. N., Akınay Y., Gülcan M. (2022). Rh (0) nanoparticles impregnated on two-dimensional transition metal carbides, MXene, as an effective nanocatalyst for ammonia-borane hydrolysis. Internatıonal Journal of Energy Research, 46(8), 11411-11423
  • Li, Q., Lin, X., Luo, Q., Chen, Y. A., Wang, J., Jiang, B., & Pan, F. (2022). Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review. International Journal of Minerals, Metallurgy and Materials, 29, 32-48.
  • Li S. F., Qi X. X., Huang B. B., 2016. Synthesis of 7-hydroxy-4-methylcoumarin via the Pechmann reaction with PVP-supported phosphotungstic acid catalyst. Catalysis Today, 276, 139-144.
  • Nasari M., Semnani D., Hadjianfar M., Amanpour S. (2020). Poly(e-Caprolactone)/Poly (N-Vinyl-2-Pyrrolidone) Core–ShellNanofibers Loaded by Multi-Walled Carbon Nanotubes and 5-Fluorouracil: An Anticancer Drug Delivery System. J. Mater.Sci., 55, 10185–10201.
  • Nikolic N., Spasojevic J., Radosavljevic A., Milosevic M., Barudzija T., Rakocevic L., Kacarevic-Popovic Z. (2023). Influence of poly (vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) polymer matrix composition on the bonding environment and characteristics of Ag nanoparticles produced by gamma irradiation. Radiation Physics and Chemistry, 202, 110564.
  • Nishimura S., Mizuhori K., Ebitani K. (2016). Reductive amination of furfural toward furfurylamine with aqueous ammonia under hydrogen over Ru-supported catalyst. Research on Chemical Intermediates, 42, 19-30.
  • Rakap, M. (2014). Hydrogen generation from hydrolysis of ammonia borane in the presence of highly efficient poly (N-vinyl-2-pyrrolidone)-protected platinum-ruthenium nanoparticles. Applied Catalysis A: General, 478, 15-20.
  • Sarkar A., Mukherjee T., Kapoor S. (2008). PVP-stabilized copper nanoparticles:  a reusable catalyst for “click” reaction between terminal alkynes and azides in nonaqueous solvents. J Phys Chem C, 112 (9), 3334-3340.
  • Schrotenboer, A. H., Veenstra, A. A., uit het Broek, M. A., Ursavas, E. (2022). A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy. Renewable and Sustainable Energy Reviews, 168, 112744.
  • Sharma, G., Khosla, A., Kumar, A., Kaushal, N., Sharma, S., Naushad, M., Vo, D.V.N., Igbal, J., Stadler, F.J. (2022). A comprehensive review on the removal of noxious pollutants using carrageenan based advanced adsorbents. Chemosphere, 289, 133100.
  • Shen, J., Yang, L., Hu, K., Luo, W., & Cheng, G. (2015). Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage. International Journal of Hydrogen Energy, 40(2), 1062-1070.
  • Sogut, E. G., Acidereli, H., Kuyuldar, E., Karatas, Y., Gulcan, M., Sen, F. (2019). Single-walled carbon nanotube supported Pt-Ru bimetallic superb nanocatalyst for the hydrogen generation from the methanolysis of methylamine-borane at mild conditions. Scientific Reports, 9(1), 1-9.
  • Prabu S., Vinu M., Chiang K. Y. (2022). Ultrafine Ru nanoparticles in shape control hollow octahedron MOF derived cobalt oxide@carbon as high-efficiency catalysts for hydrolysis of ammonia borane. Journal of the Taiwan Institute of Chemical Engineers,139,104511.
  • Taçyıldız, S., Demirkan, B., Karataş, Y., Gulcan, M., Sen, F. (2019). Monodisperse RuRh bimetallic nanocatalyst as highly efficient catalysts for hydrogen generation from hydrolytic dehydrogenation of methylamine-borane. Journal of Molecular Liquids, 285, 1-8.
  • Tarhan, C., Çil, M. A. (2021). A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage, 40, 102676. Umegaki T., Yan J. M., Zhang X. B., Shioyama H., Kuriyama N., Xu Q. (2009). Preparation and catalysis of poly(N-vinyl-2-pyrrolidone) (PVP) stabilized nickel catalyst for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy 34(9), 3816-3822.
  • Qiu S. J., Chu H. L., Zou Y. J., Xiang C. L., Xu F., Sun L. X. (2017). Light metal borohydrides amides combined hydrogen storage systems: composition, structure and properties. J Mater Chem A, 5 (48), 25112-25130.
  • Wei Q., Liu J., Qiu S., Xia Y., Zou Y., Xu F., Wen X., Huang P., Sun L., Chu H. (2022). Hydrogen Evolution from Ammonia–Borane Hydrolysis Catalyzed by Poly(N-Vinyl-2-Pyrrolidone)-Stabilized Ruthenium-Based Nanoclusters Catalysts. Adv. Sustainable Syst. 2200464.
  • Wen, L., Zheng, Z., Luo, W., Cai, P., & Cheng, G. Z. (2015). Ruthenium deposited on MCM-41 as efficient catalyst for hydrolytic dehydrogenation of ammonia borane and methylamine borane. Chinese Chemical Letters, 26(11), 1345-1350.
  • Wen Z., Fu Q., Wu J., Fan G. (2020). Ultrafine Pd Nanoparticles Supported on Soft Nitriding Porous Carbon for Hydrogen Production from Hydrolytic Dehydrogenation of Dimethyl Amine-Borane. Nanomaterials.10(8), 1612.
  • Yang, L., Luo, W., & Cheng, G. (2013). Graphene-supported Ag-based core–shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane. ACS applied materials & interfaces, 5(16), 8231-8240.
  • Zhan, Y., Guan, X., Ren, E., Lin, S., Lan, J. (2019). Fabrication of zeolitic imidazolate framework-8 functional polyacrylonitrile nanofbrous mats for dye removal. Journal of Polymer Research 26,1-11.
  • Zhou, J., Meng, X., Yan, J., Liu, X. (2021). Co/MoS2 nanocomposite catalyzed H2 evolution upon dimethylamine-borane hydrolysis and in situ tandem reaction. Inorganic Chemistry Communications, 130, 108691.

Poli(N-vinil-2-pirolidon) ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması

Year 2023, Volume: 13 Issue: 2, 1142 - 1154, 01.06.2023
https://doi.org/10.21597/jist.1271619

Abstract

Poli(N-vinil-2-pirolidon) (PVP) ile kararlaştırılmış Ru-Fe nanoparçacıkları (RuFe@PVP) yaygın olarak kullanılan bir alkol indirgeme tekniği ile sentezlendi. Sentezlenen nanoparçacıklar SEM, SEM/EDX, UV/Vis teknikleriyle karakterize edildi. Hazırlanan nanoparçacıklar katı halde hidrojen depolayan önemli bir bor-azot (B-N) türevi olan metilamin-boranın hidroliz tepkimesinden hidrojen üretiminde katalizör olarak kullanıldı. TOF değeri (38.4 1/min) ve aktivasyon enerjisi (87.7 kJ/mol) olarak hesaplanan iki metalli nanoparçacıklar bu özellikleri ile verimli bir katalitik sistem olarak değerlendirildi. Katalizör ve substrat derişimlerinin katalitik tepkime üzerindeki etkilerinin araştırılması sonucu tepkimenin hız ifadesinin; katalizör derişimine göre 0.5 mertebeden, substrat derişimine göre ise 1.7 mertebeden ilerlediği tespit edildi.

References

  • Abay B., Rakap M. (2020). Eco-Friendly Synthesis of Carboxymethyl Cellulose-Stabilized Ru0.57Co0.43 Nanoclusters as Extremely Efficient and Durable Catalysts for Hydrolytic Dehydrogenation of Methylamine Borane. ACS Sustainable Chemistry & Engineering, 8 (43), 16197-16204.
  • Baguc, I. B., Ertas, I. E., Yurderi, M., Bulut, A., Zahmakiran, M., Kaya, M. (2018). Nanocrystalline metal organic framework (MIL-101) stabilized copper Nanoparticles: Highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane. Inorganica Chimica Acta, 483, 431-439.
  • Baguc, I. B., Yurderi, M., Bulut, A., Celebi, M., Kanberoglu, G. S., Zahmakiran, M., Kaya M., Aydemir M., Durap F., Baysal, A. (2019). Cobalt nanoparticles supported on alumina nanofibers (Co/Al2O3): Cost effective catalytic system for the hydrolysis of methylamine borane. International Journal of Hydrogen Energy, 44(53), 28441-28450.
  • Barapati, S., Mucherla R., Gade R., Somaiah, P.V. (2022). Photodegradation of Rhodamine B and Crystal Violet using Al-doped Co–Mn nanoferrites and dielectric study, Journal of Materials Science: Materials in Electronics 33, 25139-25152.
  • Chu H., Li N., Qiu X., Wang Y., Qiu S., Zeng J. L., Zou Y., Xu F., Su L. (2019). Poly(N-vinyl-2-pyrrolidone)-stabilized ruthenium supported on bamboo leaf-derived porous carbon for NH3BH3 hydrolysis. International Journal of Hydrogen Energy, 44, 29255-29262.
  • Cao, N., Su, J., Luo, W., & Cheng, G. (2014). Hydrolytic dehydrogenation of ammonia borane and methylamine borane catalyzed by graphene supported Ru@Ni core–shell nanoparticles. International Journal of Hydrogen Energy, 39(1), 426-435.
  • Cetin A., Korkmaz A., Erdoğan E., Kösemen A. (2019). A study on synthesis, optical properties and surface morphological of novel conjugated oligo-pyrazole films. Materials Chemistry and Physics, 222, 37-44.
  • Çelebi, M., Rüzgar, A., Karataş, Y., & Gülcan, M. (2022). Manganese oxide octahedral molecular sieves stabilized Rh nanoparticles for the hydrogen production from the ethylenediamine-bisborane hydrolysis. International Journal of Hydrogen Energy, 47(37), 16494-16506.
  • Dayan, O., Kilicer, A., Bulut, A., Ceylan, E., Tayfun, U., Uzun, O., Zahmakıran M., Yurderi, M. (2022). Pumice-Supported Ruthenium nanoparticles as highly effective and recyclable catalyst in the hydrolysis of methylamine borane. International Journal of Hydrogen Energy.
  • Du, Y., Cao, N., Yang, L., Luo, W., & Cheng, G. (2013). One-step synthesis of magnetically recyclable rGO supported Cu@Co core–shell nanoparticles: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane. New Journal of Chemistry, 37(10), 3035-3042.
  • Dutta, S., Gupta, B., Srivastava, S.K., Gupta, A.K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review, Materials Advances, 2, 4497-4531.
  • Fahmy H., Abo-Shosha M, Ibrahim N. A, (2009). Finishing of cotton fabrics with poly (N-vinyl-2-pyrrolidone) to improve their performance and antibacterial properties. Carbohydrate Polymers, 77(4), 845– 850.
  • Fahmy H, Okda H., Amr A. (2022). Preparation of poly (N-vinyl-2-pyrrolidone)/ammonium persulfate hydrogel embedded silver nanoparticles. Egyptian Journal of Chemistry, 65(9), 37-45.
  • Gülcan M., Karatas Y. (2017). Synthesized polyvidone-stabilized Rh(0) nanoparticles catalyzed the hydrolytic dehydrogenation of methylamine-borane in ambient conditions. New Journal Of Chemıstry, 41(20), 11839-11845.
  • Hafez H. S., Ali E. H., Abdelmottaleb M.S.A. (2005). Photocatalytic efficiency of titanium dioxide immobilized on PVP/AAc hydrogel membranes: a comparative study for safe disposal of wastewater of Remazol Red RB-133 textile dye. International Journal of Photoenergy, 7 (4), 181-185.
  • Hanley E. S., Deane J. P., Gallachóir B. P. O. (2018). The role of hydrogen in low carbon energy futures – a review of existing perspectives. Renew Sustain Energy Rev, 82, 3027-3045
  • Kanat, M., Karataş, Y., Gülcan, M., Anıl, B. (2018). Preparation and detailed characterization of zirconia nanopowder supported rhodium (0) nanoparticles for hydrogen production from the methanolysis of methylamine-borane in room conditions. International Journal of Hydrogen Energy, 43(50), 22548-22556.
  • Karatas Y., Acidereli H., Gulcan M., Sen F. (2020). A novel highly active and reusable carbon based platinum-ruthenium nanocatalyst for dimethylamine-borane dehydrogenation in water at room conditions. Scientific Reports, 10(1), 1-10.
  • Karatas Y., Cetin T., Akkus I. N., Akınay Y., Gülcan M. (2022). Rh (0) nanoparticles impregnated on two-dimensional transition metal carbides, MXene, as an effective nanocatalyst for ammonia-borane hydrolysis. Internatıonal Journal of Energy Research, 46(8), 11411-11423
  • Li, Q., Lin, X., Luo, Q., Chen, Y. A., Wang, J., Jiang, B., & Pan, F. (2022). Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review. International Journal of Minerals, Metallurgy and Materials, 29, 32-48.
  • Li S. F., Qi X. X., Huang B. B., 2016. Synthesis of 7-hydroxy-4-methylcoumarin via the Pechmann reaction with PVP-supported phosphotungstic acid catalyst. Catalysis Today, 276, 139-144.
  • Nasari M., Semnani D., Hadjianfar M., Amanpour S. (2020). Poly(e-Caprolactone)/Poly (N-Vinyl-2-Pyrrolidone) Core–ShellNanofibers Loaded by Multi-Walled Carbon Nanotubes and 5-Fluorouracil: An Anticancer Drug Delivery System. J. Mater.Sci., 55, 10185–10201.
  • Nikolic N., Spasojevic J., Radosavljevic A., Milosevic M., Barudzija T., Rakocevic L., Kacarevic-Popovic Z. (2023). Influence of poly (vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) polymer matrix composition on the bonding environment and characteristics of Ag nanoparticles produced by gamma irradiation. Radiation Physics and Chemistry, 202, 110564.
  • Nishimura S., Mizuhori K., Ebitani K. (2016). Reductive amination of furfural toward furfurylamine with aqueous ammonia under hydrogen over Ru-supported catalyst. Research on Chemical Intermediates, 42, 19-30.
  • Rakap, M. (2014). Hydrogen generation from hydrolysis of ammonia borane in the presence of highly efficient poly (N-vinyl-2-pyrrolidone)-protected platinum-ruthenium nanoparticles. Applied Catalysis A: General, 478, 15-20.
  • Sarkar A., Mukherjee T., Kapoor S. (2008). PVP-stabilized copper nanoparticles:  a reusable catalyst for “click” reaction between terminal alkynes and azides in nonaqueous solvents. J Phys Chem C, 112 (9), 3334-3340.
  • Schrotenboer, A. H., Veenstra, A. A., uit het Broek, M. A., Ursavas, E. (2022). A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy. Renewable and Sustainable Energy Reviews, 168, 112744.
  • Sharma, G., Khosla, A., Kumar, A., Kaushal, N., Sharma, S., Naushad, M., Vo, D.V.N., Igbal, J., Stadler, F.J. (2022). A comprehensive review on the removal of noxious pollutants using carrageenan based advanced adsorbents. Chemosphere, 289, 133100.
  • Shen, J., Yang, L., Hu, K., Luo, W., & Cheng, G. (2015). Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage. International Journal of Hydrogen Energy, 40(2), 1062-1070.
  • Sogut, E. G., Acidereli, H., Kuyuldar, E., Karatas, Y., Gulcan, M., Sen, F. (2019). Single-walled carbon nanotube supported Pt-Ru bimetallic superb nanocatalyst for the hydrogen generation from the methanolysis of methylamine-borane at mild conditions. Scientific Reports, 9(1), 1-9.
  • Prabu S., Vinu M., Chiang K. Y. (2022). Ultrafine Ru nanoparticles in shape control hollow octahedron MOF derived cobalt oxide@carbon as high-efficiency catalysts for hydrolysis of ammonia borane. Journal of the Taiwan Institute of Chemical Engineers,139,104511.
  • Taçyıldız, S., Demirkan, B., Karataş, Y., Gulcan, M., Sen, F. (2019). Monodisperse RuRh bimetallic nanocatalyst as highly efficient catalysts for hydrogen generation from hydrolytic dehydrogenation of methylamine-borane. Journal of Molecular Liquids, 285, 1-8.
  • Tarhan, C., Çil, M. A. (2021). A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage, 40, 102676. Umegaki T., Yan J. M., Zhang X. B., Shioyama H., Kuriyama N., Xu Q. (2009). Preparation and catalysis of poly(N-vinyl-2-pyrrolidone) (PVP) stabilized nickel catalyst for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy 34(9), 3816-3822.
  • Qiu S. J., Chu H. L., Zou Y. J., Xiang C. L., Xu F., Sun L. X. (2017). Light metal borohydrides amides combined hydrogen storage systems: composition, structure and properties. J Mater Chem A, 5 (48), 25112-25130.
  • Wei Q., Liu J., Qiu S., Xia Y., Zou Y., Xu F., Wen X., Huang P., Sun L., Chu H. (2022). Hydrogen Evolution from Ammonia–Borane Hydrolysis Catalyzed by Poly(N-Vinyl-2-Pyrrolidone)-Stabilized Ruthenium-Based Nanoclusters Catalysts. Adv. Sustainable Syst. 2200464.
  • Wen, L., Zheng, Z., Luo, W., Cai, P., & Cheng, G. Z. (2015). Ruthenium deposited on MCM-41 as efficient catalyst for hydrolytic dehydrogenation of ammonia borane and methylamine borane. Chinese Chemical Letters, 26(11), 1345-1350.
  • Wen Z., Fu Q., Wu J., Fan G. (2020). Ultrafine Pd Nanoparticles Supported on Soft Nitriding Porous Carbon for Hydrogen Production from Hydrolytic Dehydrogenation of Dimethyl Amine-Borane. Nanomaterials.10(8), 1612.
  • Yang, L., Luo, W., & Cheng, G. (2013). Graphene-supported Ag-based core–shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane. ACS applied materials & interfaces, 5(16), 8231-8240.
  • Zhan, Y., Guan, X., Ren, E., Lin, S., Lan, J. (2019). Fabrication of zeolitic imidazolate framework-8 functional polyacrylonitrile nanofbrous mats for dye removal. Journal of Polymer Research 26,1-11.
  • Zhou, J., Meng, X., Yan, J., Liu, X. (2021). Co/MoS2 nanocomposite catalyzed H2 evolution upon dimethylamine-borane hydrolysis and in situ tandem reaction. Inorganic Chemistry Communications, 130, 108691.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Yaşar Karataş 0000-0002-9171-7781

Adem Rüzgar 0000-0001-6922-043X

Early Pub Date May 27, 2023
Publication Date June 1, 2023
Submission Date March 27, 2023
Acceptance Date April 27, 2023
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

APA Karataş, Y., & Rüzgar, A. (2023). Poli(N-vinil-2-pirolidon) ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması. Journal of the Institute of Science and Technology, 13(2), 1142-1154. https://doi.org/10.21597/jist.1271619
AMA Karataş Y, Rüzgar A. Poli(N-vinil-2-pirolidon) ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması. J. Inst. Sci. and Tech. June 2023;13(2):1142-1154. doi:10.21597/jist.1271619
Chicago Karataş, Yaşar, and Adem Rüzgar. “Poli(N-Vinil-2-Pirolidon) Ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması Ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması”. Journal of the Institute of Science and Technology 13, no. 2 (June 2023): 1142-54. https://doi.org/10.21597/jist.1271619.
EndNote Karataş Y, Rüzgar A (June 1, 2023) Poli(N-vinil-2-pirolidon) ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması. Journal of the Institute of Science and Technology 13 2 1142–1154.
IEEE Y. Karataş and A. Rüzgar, “Poli(N-vinil-2-pirolidon) ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması”, J. Inst. Sci. and Tech., vol. 13, no. 2, pp. 1142–1154, 2023, doi: 10.21597/jist.1271619.
ISNAD Karataş, Yaşar - Rüzgar, Adem. “Poli(N-Vinil-2-Pirolidon) Ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması Ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması”. Journal of the Institute of Science and Technology 13/2 (June 2023), 1142-1154. https://doi.org/10.21597/jist.1271619.
JAMA Karataş Y, Rüzgar A. Poli(N-vinil-2-pirolidon) ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması. J. Inst. Sci. and Tech. 2023;13:1142–1154.
MLA Karataş, Yaşar and Adem Rüzgar. “Poli(N-Vinil-2-Pirolidon) Ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması Ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması”. Journal of the Institute of Science and Technology, vol. 13, no. 2, 2023, pp. 1142-54, doi:10.21597/jist.1271619.
Vancouver Karataş Y, Rüzgar A. Poli(N-vinil-2-pirolidon) ile Kararlaştırılmış Ru-Fe Nanokümelerinin Sentezlenmesi, Tanımlanması ve Metilamin-Boran’ın Hidroliz Tepkimesinde Katalitik Etkinliğinin Araştırılması. J. Inst. Sci. and Tech. 2023;13(2):1142-54.