Research Article
BibTex RIS Cite

Characterization of Paper-Like Material Prepared from Chitosan/Graphene Oxide Composite

Year 2022, , 699 - 708, 31.08.2022
https://doi.org/10.18596/jotcsa.1060472

Abstract

Chitosan (CTS) is considered to be a common biomacromolecule/poly-cationic compound containing the potential functional groups that can be utilized as a feedstock for novel materials. In this study, CTS/graphene oxide (CTS/GO, CG) mixtures were prepared at different conditions to confirm a suitable hydrogel formation, then applied to produce paper-like materials with various thickness via a simple casting method. As a result, the morphological structure of finally yielded the paper-like materials (CG2 papers with the various number of casting times) obtained the layer-by-layer structures instead of the tightly-sticky paper-like structure (GO paper). Basing on the possible interactions between the CTS molecules and GO nanosheets occurred in the CG mixtures could be also determined by FTIR and Raman analysis; concomitantly, its thermal property reaches higher than that of the pure GO. Notably, the strong interactions and compatibility of the CTS molecules and GO nanosheets revealed a good dispersion and interfacial adhesion leading to significantly enhancing the mechanical properties of the CG2 paper-like materials with increasing number of casting times or comparing to GO paper. Therefore, the CG2 paper-like materials with the various number of casting times fabricated in the present study can expose new approaches for the design and application of future foil/paper-like materials, as well as the desired thickness of these foil/paper-like materials can be controlled easily.

Supporting Institution

No

Project Number

No

References

  • 1. Vo TS, Vo TTBC. Preparation and Characterization of Bis-Propargyl-Succinate, and its Application in Preliminary Healing Ability of Crosslinked Polyurethane using" Azide-Alkyne" Click. Journal of Engineering Science & Technology Review. 2020;13(4).
  • 2. Vo TS, Vo TTBC, Ti̇En TT, Si̇Nh NT. Enhancement of mechanical property of modified polyurethane with bis-butyl succinate. JOTCSA. 2021 Mar 30;8(2):519–26.
  • 3. Vo TS, Vo TTBC. A Self-Healing Material Based on Microcapsules of Poly(Urea-Formaldehyde)/Bis-Propargyl-Succinate Containing in Polyurethane Matrix. JOTCSA. 2021 Jul 26;8(3):787–802.
  • 4. Vo TS, Vo TTTN, Chau TTB. Preparation and Characterization of Microcapsules Containing Canola Oil with Poly (urea-formaldehyde) Shell and its Stability. Journal of Engineering Science & Technology Review. 2021;14(4):21–36.
  • 5. Vo TS, Vo TTBC, Nguyen TS, Ti̇En TT. Fabrication and Characterization of Gelatin/Chitosan Hydrogel Utilizing as Membranes. Journal of the Turkish Chemical Society Section A: Chemistry. 2021 Oct 1;8(4): 1045–56.
  • 6. Pitkethly MJ. Nanomaterials – the driving force. Materials Today. 2004 Dec;7(12):20–9.
  • 7. Reynolds R, Greinke R. Influence of expansion volume of intercalated graphite on tensile properties of flexible graphite. Carbon. 2001;3(39):479–81.
  • 8. Hennrich F, Lebedkin S, Malik S, Tracy J, Barczewski M, Rösner H, et al. Preparation, characterization and applications of free-standing single walled carbon nanotube thin films. Phys Chem Chem Phys. 2002 May 20;4(11):2273–7.
  • 9. Coleman JN, Blau WJ, Dalton AB, Muñoz E, Collins S, Kim BG, et al. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl Phys Lett. 2003 Mar 17;82(11):1682–4.
  • 10. Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman R. Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials. Journal of Applied Physics. 2004 Apr 15;95(8):4335–45.
  • 11. Vo TS. Progresses and expansions of chitosan-graphene oxide hybrid networks utilizing as adsorbents and their organic dye removal performances: A short review. Journal of the Turkish Chemical Society Section A: Chemistry. 2021 Oct 18;8(4):1121–36.
  • 12. Velmurugan N, Kumar GG, Han SS, Nahm KS, Lee YS. Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iranian Polymer Journal. 2009;18(5(107)):383–92.
  • 13. Jiao TF, Zhou J, Zhou J, Gao L, Xing Y, Li X. Synthesis and characterization of chitosan-based Schiff base compounds with aromatic substituent groups. Iranian Polymer Journal. 2011;20(2):123–36.
  • 14. Rao KK, Rao KM, Kumar PN, Chung ID. Novel chitosan-based pH sensitive micro-networks for the controlled release of 5-fluorouracil. Iranian Polymer Journal. 2010;19(4):265–76.
  • 15. Xu Y, Wu Q, Sun Y, Bai H, Shi G. Three-Dimensional Self-Assembly of Graphene Oxide and DNA into Multifunctional Hydrogels. ACS Nano. 2010 Dec 28;4(12):7358–62.
  • 16. Tung VC, Kim J, Cote LJ, Huang J. Sticky Interconnect for Solution-Processed Tandem Solar Cells. J Am Chem Soc. 2011 Jun 22;133(24):9262–5.
  • 17. Bai H, Li C, Wang X, Shi G. On the Gelation of Graphene Oxide. J Phys Chem C. 2011 Apr 7;115(13):5545–51.
  • 18. Singh N, Riyajuddin S, Ghosh K, Mehta SK, Dan A. Chitosan-Graphene Oxide Hydrogels with Embedded Magnetic Iron Oxide Nanoparticles for Dye Removal. ACS Appl Nano Mater. 2019 Nov 22;2(11):7379–92.
  • 19. Han Lyn F, Tan CP, Zawawi RM, Nur Hanani ZA. Physicochemical properties of chitosan/ graphene oxide composite films and their effects on storage stability of palm-oil based margarine. Food Hydrocolloids. 2021 Aug;117:106707.
  • 20. Menazea AA, Ezzat HA, Omara W, Basyouni OH, Ibrahim SA, Mohamed AA, et al. Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. Computational and Theoretical Chemistry. 2020 Nov;1189:112980.
  • 21. Januário EFD, Vidovix TB, Beluci N de CL, Paixão RM, Silva LHBR da, Homem NC, et al. Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. Science of The Total Environment. 2021 Oct;789:147957.
  • 22. Sharma P, Das MR. Removal of a Cationic Dye from Aqueous Solution Using Graphene Oxide Nanosheets: Investigation of Adsorption Parameters. J Chem Eng Data. 2013 Jan 10;58(1):151–8.
  • 23. Kahya N, Erim FB. Graphene oxide/chitosan-based composite materials as adsorbents in dye removal. Chemical Engineering Communications. 2021 Oct 6;1–16.
  • 24. Sabzevari M, Cree DE, Wilson LD. Graphene Oxide–Chitosan Composite Material for Treatment of a Model Dye Effluent. ACS Omega. 2018 Oct 31;3(10):13045–54.
  • 25. Zhang H ping, Yang B, Wang ZM, Xie C, Tang P, Bian L, et al. Porous graphene oxide/chitosan nanocomposites based on interfacial chemical interactions. European Polymer Journal. 2019 Oct;119:114–9.
  • 26. Yang X, Tu Y, Li L, Shang S, Tao X ming. Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Appl Mater Interfaces. 2010 Jun 23;2(6):1707–13.
  • 27. Mansur HS, Mansur AAP, Curti E, De Almeida MV. Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. J Mater Chem B. 2013;1(12):1696.
  • 28. El Ichi S, Zebda A, Alcaraz JP, Laaroussi A, Boucher F, Boutonnat J, et al. Bioelectrodes modified with chitosan for long-term energy supply from the body. Energy Environ Sci. 2015;8(3):1017–26.
  • 29. Vo TS, Vo TTBC, Nguyen TS, Pham ND. Incorporation of hydroxyapatite in crosslinked gelatin/chitosan/poly(vinyl alcohol) hybrids utilizing as reinforced composite sponges, and their water absorption ability. Progress in Natural Science: Materials International. 2021 Oct;31(5):664–71.
  • 30. Vo TS, Vo TTBC, Tran TT, Pham ND. Enhancement of water absorption capacity and compressibility of hydrogel sponges prepared from gelatin/chitosan matrix with different polyols. Progress in Natural Science: Materials International. 2022 Feb;32(1):54–62.
  • 31. Bano S, Mahmood A, Kim SJ, Lee KH. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A. 2015;3(5):2065–71.
  • 32. Shen L, Xiong S, Wang Y. Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chemical Engineering Science. 2016 Apr;143:194–205.
  • 33. He D, Peng Z, Gong W, Luo Y, Zhao P, Kong L. Mechanism of a green graphene oxide reduction with reusable potassium carbonate. RSC Adv. 2015;5(16):11966–72.
  • 34. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007 Jul;448(7152):457–60.
  • 35. Wool RP, Statton WO. Dynamic polarized infrared studies of stress relaxation and creep in polypropylene. J Polym Sci Polym Phys Ed. 1974 Aug;12(8):1575–86.
  • 36. Wool RP. Mechanisms of frequency shifting in the infrared spectrum of stressed polymer. J Polym Sci Polym Phys Ed. 1975 Sep;13(9):1795–808.
  • 37. Wool RP. Infrared studies of deformation in semicrystalline polymers. Polym Eng Sci. 1980 Aug;20(12):805–15.
  • 38. Ward IM, Hadley DW. An introduction to the mechanical properties of solid polymers. 1993. ISBN: 0-471-93874-2.
  • 39. Coleman JN, Khan U, Gun’ko YK. Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Adv Mater. 2006 Mar 17;18(6):689–706.
Year 2022, , 699 - 708, 31.08.2022
https://doi.org/10.18596/jotcsa.1060472

Abstract

Project Number

No

References

  • 1. Vo TS, Vo TTBC. Preparation and Characterization of Bis-Propargyl-Succinate, and its Application in Preliminary Healing Ability of Crosslinked Polyurethane using" Azide-Alkyne" Click. Journal of Engineering Science & Technology Review. 2020;13(4).
  • 2. Vo TS, Vo TTBC, Ti̇En TT, Si̇Nh NT. Enhancement of mechanical property of modified polyurethane with bis-butyl succinate. JOTCSA. 2021 Mar 30;8(2):519–26.
  • 3. Vo TS, Vo TTBC. A Self-Healing Material Based on Microcapsules of Poly(Urea-Formaldehyde)/Bis-Propargyl-Succinate Containing in Polyurethane Matrix. JOTCSA. 2021 Jul 26;8(3):787–802.
  • 4. Vo TS, Vo TTTN, Chau TTB. Preparation and Characterization of Microcapsules Containing Canola Oil with Poly (urea-formaldehyde) Shell and its Stability. Journal of Engineering Science & Technology Review. 2021;14(4):21–36.
  • 5. Vo TS, Vo TTBC, Nguyen TS, Ti̇En TT. Fabrication and Characterization of Gelatin/Chitosan Hydrogel Utilizing as Membranes. Journal of the Turkish Chemical Society Section A: Chemistry. 2021 Oct 1;8(4): 1045–56.
  • 6. Pitkethly MJ. Nanomaterials – the driving force. Materials Today. 2004 Dec;7(12):20–9.
  • 7. Reynolds R, Greinke R. Influence of expansion volume of intercalated graphite on tensile properties of flexible graphite. Carbon. 2001;3(39):479–81.
  • 8. Hennrich F, Lebedkin S, Malik S, Tracy J, Barczewski M, Rösner H, et al. Preparation, characterization and applications of free-standing single walled carbon nanotube thin films. Phys Chem Chem Phys. 2002 May 20;4(11):2273–7.
  • 9. Coleman JN, Blau WJ, Dalton AB, Muñoz E, Collins S, Kim BG, et al. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl Phys Lett. 2003 Mar 17;82(11):1682–4.
  • 10. Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman R. Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials. Journal of Applied Physics. 2004 Apr 15;95(8):4335–45.
  • 11. Vo TS. Progresses and expansions of chitosan-graphene oxide hybrid networks utilizing as adsorbents and their organic dye removal performances: A short review. Journal of the Turkish Chemical Society Section A: Chemistry. 2021 Oct 18;8(4):1121–36.
  • 12. Velmurugan N, Kumar GG, Han SS, Nahm KS, Lee YS. Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iranian Polymer Journal. 2009;18(5(107)):383–92.
  • 13. Jiao TF, Zhou J, Zhou J, Gao L, Xing Y, Li X. Synthesis and characterization of chitosan-based Schiff base compounds with aromatic substituent groups. Iranian Polymer Journal. 2011;20(2):123–36.
  • 14. Rao KK, Rao KM, Kumar PN, Chung ID. Novel chitosan-based pH sensitive micro-networks for the controlled release of 5-fluorouracil. Iranian Polymer Journal. 2010;19(4):265–76.
  • 15. Xu Y, Wu Q, Sun Y, Bai H, Shi G. Three-Dimensional Self-Assembly of Graphene Oxide and DNA into Multifunctional Hydrogels. ACS Nano. 2010 Dec 28;4(12):7358–62.
  • 16. Tung VC, Kim J, Cote LJ, Huang J. Sticky Interconnect for Solution-Processed Tandem Solar Cells. J Am Chem Soc. 2011 Jun 22;133(24):9262–5.
  • 17. Bai H, Li C, Wang X, Shi G. On the Gelation of Graphene Oxide. J Phys Chem C. 2011 Apr 7;115(13):5545–51.
  • 18. Singh N, Riyajuddin S, Ghosh K, Mehta SK, Dan A. Chitosan-Graphene Oxide Hydrogels with Embedded Magnetic Iron Oxide Nanoparticles for Dye Removal. ACS Appl Nano Mater. 2019 Nov 22;2(11):7379–92.
  • 19. Han Lyn F, Tan CP, Zawawi RM, Nur Hanani ZA. Physicochemical properties of chitosan/ graphene oxide composite films and their effects on storage stability of palm-oil based margarine. Food Hydrocolloids. 2021 Aug;117:106707.
  • 20. Menazea AA, Ezzat HA, Omara W, Basyouni OH, Ibrahim SA, Mohamed AA, et al. Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. Computational and Theoretical Chemistry. 2020 Nov;1189:112980.
  • 21. Januário EFD, Vidovix TB, Beluci N de CL, Paixão RM, Silva LHBR da, Homem NC, et al. Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. Science of The Total Environment. 2021 Oct;789:147957.
  • 22. Sharma P, Das MR. Removal of a Cationic Dye from Aqueous Solution Using Graphene Oxide Nanosheets: Investigation of Adsorption Parameters. J Chem Eng Data. 2013 Jan 10;58(1):151–8.
  • 23. Kahya N, Erim FB. Graphene oxide/chitosan-based composite materials as adsorbents in dye removal. Chemical Engineering Communications. 2021 Oct 6;1–16.
  • 24. Sabzevari M, Cree DE, Wilson LD. Graphene Oxide–Chitosan Composite Material for Treatment of a Model Dye Effluent. ACS Omega. 2018 Oct 31;3(10):13045–54.
  • 25. Zhang H ping, Yang B, Wang ZM, Xie C, Tang P, Bian L, et al. Porous graphene oxide/chitosan nanocomposites based on interfacial chemical interactions. European Polymer Journal. 2019 Oct;119:114–9.
  • 26. Yang X, Tu Y, Li L, Shang S, Tao X ming. Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Appl Mater Interfaces. 2010 Jun 23;2(6):1707–13.
  • 27. Mansur HS, Mansur AAP, Curti E, De Almeida MV. Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. J Mater Chem B. 2013;1(12):1696.
  • 28. El Ichi S, Zebda A, Alcaraz JP, Laaroussi A, Boucher F, Boutonnat J, et al. Bioelectrodes modified with chitosan for long-term energy supply from the body. Energy Environ Sci. 2015;8(3):1017–26.
  • 29. Vo TS, Vo TTBC, Nguyen TS, Pham ND. Incorporation of hydroxyapatite in crosslinked gelatin/chitosan/poly(vinyl alcohol) hybrids utilizing as reinforced composite sponges, and their water absorption ability. Progress in Natural Science: Materials International. 2021 Oct;31(5):664–71.
  • 30. Vo TS, Vo TTBC, Tran TT, Pham ND. Enhancement of water absorption capacity and compressibility of hydrogel sponges prepared from gelatin/chitosan matrix with different polyols. Progress in Natural Science: Materials International. 2022 Feb;32(1):54–62.
  • 31. Bano S, Mahmood A, Kim SJ, Lee KH. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A. 2015;3(5):2065–71.
  • 32. Shen L, Xiong S, Wang Y. Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chemical Engineering Science. 2016 Apr;143:194–205.
  • 33. He D, Peng Z, Gong W, Luo Y, Zhao P, Kong L. Mechanism of a green graphene oxide reduction with reusable potassium carbonate. RSC Adv. 2015;5(16):11966–72.
  • 34. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007 Jul;448(7152):457–60.
  • 35. Wool RP, Statton WO. Dynamic polarized infrared studies of stress relaxation and creep in polypropylene. J Polym Sci Polym Phys Ed. 1974 Aug;12(8):1575–86.
  • 36. Wool RP. Mechanisms of frequency shifting in the infrared spectrum of stressed polymer. J Polym Sci Polym Phys Ed. 1975 Sep;13(9):1795–808.
  • 37. Wool RP. Infrared studies of deformation in semicrystalline polymers. Polym Eng Sci. 1980 Aug;20(12):805–15.
  • 38. Ward IM, Hadley DW. An introduction to the mechanical properties of solid polymers. 1993. ISBN: 0-471-93874-2.
  • 39. Coleman JN, Khan U, Gun’ko YK. Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Adv Mater. 2006 Mar 17;18(6):689–706.
There are 39 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

Thi Sinh Vo 0000-0003-3830-0474

Tran Thi Bich Chau Vo 0000-0002-3049-2080

Project Number No
Publication Date August 31, 2022
Submission Date January 20, 2022
Acceptance Date April 11, 2022
Published in Issue Year 2022

Cite

Vancouver Vo TS, Vo TTBC. Characterization of Paper-Like Material Prepared from Chitosan/Graphene Oxide Composite. JOTCSA. 2022;9(3):699-708.