Research Article
BibTex RIS Cite
Year 2022, , 1129 - 1140, 30.11.2022
https://doi.org/10.18596/jotcsa.1141909

Abstract

References

  • 1. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik [Internet]. 2017 Jan [cited 2022 Oct 9];128:26–33.
  • 2. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb 2 O 6 :Eu 3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv [Internet]. 2021 [cited 2022 Oct 9];11(18):10451–62.
  • 3. Ekmekçi MK, İlhan M, Başak AS, Deniz S. Structural and Luminescence Properties of Sm3+ Doped TTB -Type BaTa2O6 Ceramic Phosphors. J Fluoresc [Internet]. 2015 Nov [cited 2022 Oct 9];25(6):1757–62.
  • 4. İlhan M, Ekmekçi MK, Oraltay RG, Başak AS. Structural and Near-Infrared Properties of Nd3+ Activated Lu3NbO7 Phosphor. J Fluoresc [Internet]. 2017 Jan [cited 2022 Oct 9];27(1):199–203.
  • 5. İlhan M, Ekmekçi MK, Mergen A, Yaman C. Photoluminescence characterization and heat treatment effect on luminescence behavior of BaTa 2 O 6 :Dy 3+ phosphor. Int J Appl Ceram Technol [Internet]. 2017 Nov [cited 2022 Oct 9];14(6):1134–43.
  • 6. Ekmekçi MK, Erdem M, Başak AS, İlhan M, Mergen A. Molten salt synthesis and optical properties of Eu3+, Dy3+or Nd3+ doped NiNb2O6 columbite-type phosphors. Ceramics International [Internet]. 2015 Sep [cited 2022 Oct 9];41(8):9680–5.
  • 7. Ekmekçi MK, Erdem M, Başak AS. Molten salt synthesis, visible and near-IR region spectral properties of europium or neodymium doped CoNb 2 O 6 columbite niobate. Dalton Trans [Internet]. 2015 [cited 2022 Oct 9];44(12):5379–85.
  • 8. İlhan M. Synthesis, Structural Properties and Visible–Near Infrared Photoluminescence of Trivalent Erbium (Er3+) Doped BaTa2O6 Phosphor. AKU-J Sci Eng [Internet]. 2017 Aug 1 [cited 2022 Oct 9];17(2):675–82.
  • 9. Ekmekçi MK, İlhan M, Ege A, Ayvacıklı M. Microstructural and Radioluminescence Characteristics of Nd3+ Doped Columbite-Type SrNb2O6 Phosphor. J Fluoresc [Internet]. 2017 May [cited 2022 Oct 9];27(3):973–9.
  • 10. Binnemans K. Interpretation of europium(III) spectra. Coordination Chemistry Reviews [Internet]. 2015 Jul [cited 2022 Oct 9];295:1–45.
  • 11. Mitsui T, Yamamoto N, Tadokoro T, Ohta S. Cathodoluminescence image of defects and luminescence centers in ZnS/GaAs(100). Journal of Applied Physics [Internet]. 1996 Dec 15 [cited 2022 Oct 9];80(12):6972–9.
  • 12. Yacobi BG, Holt DB. Cathodoluminescence scanning electron microscopy of semiconductors. Journal of Applied Physics [Internet]. 1986 Feb 15 [cited 2022 Oct 9];59(4):R1–24.
  • 13. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem Pap [Internet]. 2022 Jul 31 [cited 2022 Oct 9];
  • 14. Edwards PR, Martin RW. Cathodoluminescence nano-characterization of semiconductors. Semicond Sci Technol [Internet]. 2011 Jun 1 [cited 2022 Oct 9];26(6):064005.
  • 15. Dierre B, Yuan X, Sekiguchi T. Low-energy cathodoluminescence microscopy for the characterization of nanostructures. Science and Technology of Advanced Materials [Internet]. 2010 Feb [cited 2022 Oct 9];11(4):043001.
  • 16. Ma DDD, Lee ST, Mueller P, Alvarado SF. Scanning Tunneling Microscope Excited Cathodoluminescence from ZnS Nanowires. Nano Lett [Internet]. 2006 May 1 [cited 2022 Oct 9];6(5):926–9.
  • 17. İlhan M, Ekmekçi MK, Demir A, Demirer H. Synthesis and Optical Properties of Novel Red-Emitting PbNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Sep [cited 2022 Oct 9];26(5):1637–43.
  • 18. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Physica B: Condensed Matter [Internet]. 2020 May [cited 2022 Oct 9];585:412106.
  • 19. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A. Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Mar [cited 2022 Oct 9];26(2):719–24. Available from: http://link.springer.com/10.1007/s10895-015-1759-y
  • 20. Francombe MH. Polymorphism in lead metaniobate. Acta Cryst [Internet]. 1956 Aug 1 [cited 2022 Oct 9];9(8):683–4.
  • 21. Roth RS, Waring JL. Phase equilibrium relations in the binary system barium oxide-niobium pentoxide. J RES NATL BUR STAN SECT A [Internet]. 1961 Jul [cited 2022 Oct 9];65A(4):337.
  • 22. Xiao Q, Zhou Q, Zhang J, Ouyang L. Photocatalytic decolorization of methylene blue over monoclinic pyrochlore-type Pb2Nb2O7 under visible light irradiation. Journal of Alloys and Compounds [Internet]. 2009 Jan [cited 2022 Oct 9];468(1–2):L9–12.
  • 23. Sahini MG, Grande T, Fraygola B, Biancoli A, Damjanovic D, Setter N. Solid Solutions of Lead Metaniobate-Stabilization of the Ferroelectric Polymorph and the Effect on the Lattice Parameters, Dielectric, Ferroelectric, and Piezoelectric Properties. Viehland D, editor. J Am Ceram Soc [Internet]. 2014 Jan [cited 2022 Oct 9];97(1):220–7.
  • 24. Francombe MH, Lewis B. Structural, dielectric and optical properties of ferroelectric lead metaniobate. Acta Cryst [Internet]. 1958 Oct 1 [cited 2022 Oct 9];11(10):696–703.
  • 25. Subbarao EC, Shirane G, Jona F. X-ray dielectric, and optical study of ferroelectric lead metatantalate and related compounds. Acta Cryst [Internet]. 1960 Mar 1 [cited 2022 Oct 9];13(3):226–31.
  • 26. Goodman G. Ferroelectric Properties of Lead Metaniobate. J American Ceramic Society [Internet]. 1953 Nov [cited 2022 Oct 9];36(11):368–72.
  • 27. Subbarao EC. X-Ray Study of Phase Transitions in Ferroelectric PbNb2O6 and Related Materials. J American Ceramic Society [Internet]. 1960 Sep [cited 2022 Oct 9];43(9):439–42.
  • 28. Chakraborty KR, Sahu KR, De A, De U. Structural Characterization of Orthorhombic and Rhombohedral Lead Meta-Niobate Samples. Integrated Ferroelectrics [Internet]. 2010 Nov 12 [cited 2022 Oct 9];120(1):102–13.
  • 29. Haertling GH. Ferroelectric Ceramics: History and Technology. Journal of the American Ceramic Society [Internet]. 1999 Apr [cited 2022 Oct 9];82(4):797–818.
  • 30. Sahu KR, De U. Thermal characterization of piezoelectric and non-piezoelectric Lead Meta-Niobate. Thermochimica Acta [Internet]. 2009 Jun [cited 2022 Oct 9];490(1–2):75–7.
  • 31. Sahu KR, De U. Impedance Spectroscopy of Piezoelectric 0.963PbNb2O6 – 0.037Ca0.6TiO3. Materials Today: Proceedings [Internet]. 2019 [cited 2022 Oct 9];11:859–68.
  • 32. Fang R, Zhou Z, Liang R, Dong X. Effects of CuO addition on the sinterability and electric properties in PbNb2O6-based ceramics. Ceramics International [Internet]. 2020 Oct [cited 2022 Oct 9];46(15):23505–9.
  • 33. Yu H, Liu Y, Deng C, Xia M, Zhang X, Zhang L, et al. Lithium storage behaviors of PbNb2O6 in rechargeable batteries. Ceramics International [Internet]. 2021 Oct [cited 2022 Oct 9];47(19):26732–7.
  • 34 Yoel A, Michael PEP, Kokate MV, Tabhane VA. Effect of gamma rays irradiation on ferroelectric phase transition and domain defect interaction in lead meta niobate single crystal. Physica B: Condensed Matter [Internet]. 2012 Feb [cited 2022 Oct 9];407(4):576–80.
  • 35. Raghavendra V, Viswarupachary P, Suryanarayana B, Chandra Mouli K, Vikram GNVR, Murali N. Dielectric and piezoelectric properties of Sm3+ doped lead barium niobate (PBN) ceramics. Physica B: Condensed Matter [Internet]. 2019 Mar [cited 2022 Oct 9];556:75–81.
  • 36. Aslam S, Rafique HM, Ramay SM, Akhtar N, Mustafa GM, Siddig AA, et al. Tuning the dielectric properties of PbNb2O6 perovskite through calcium substitution. Physica B: Condensed Matter [Internet]. 2022 Jun [cited 2022 Oct 9];635:413840.
  • 37. Li YM, Cheng L, Gu XY, Zhang YP, Liao RH. Piezoelectric and dielectric properties of PbNb2O6-based piezoelectric ceramics with high Curie temperature. Journal of Materials Processing Technology [Internet]. 2008 Feb [cited 2022 Oct 9];197(1–3):170–3.
  • 38. Guerrero F, Leyet Y, Venet M, de Los S. Guerra J, Eiras JA. Dielectric behavior of the PbNb2O6 ferroelectric ceramic in the frequency range of 20Hz to 2GHz. Journal of the European Ceramic Society [Internet]. 2007 Jan [cited 2022 Oct 9];27(13–15):4041–4.
  • 39. Neurgaonkar RR, Cory WK. Progress in photorefractive tungsten bronze crystals. J Opt Soc Am B [Internet]. 1986 Feb 1 [cited 2022 Oct 9];3(2):274.
  • 40. Xu Y. Ferroelectric tungsten-bronze-type niobate crystals. In: Ferroelectric materials and their applications [Internet]. Amsterdam ; New York : New York, NY, USA: North-Holland ; Sole distributors for the USA and Canada, Elsevier Science Pub. Co; 1991. p. 247–9.
  • 41. İlhan M, Keskin İÇ, Gültekin S. Assessing of Photoluminescence and Thermoluminescence Properties of Dy3+ Doped White Light Emitter TTB-Lead Metatantalate Phosphor. Journal of Elec Materi [Internet]. 2020 Apr [cited 2022 Oct 9];49(4):2436–49.
  • 42. İlhan M, Ekmekçi MK, Mergen A, Yaman C. Synthesis and Optical Characterization of Red-Emitting BaTa2O6:Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Sep [cited 2022 Oct 9];26(5):1671–8. .
  • 43. Coenen T, Haegel NM. Cathodoluminescence for the 21st century: Learning more from light. Applied Physics Reviews [Internet]. 2017 Sep [cited 2022 Oct 9];4(3):031103.
  • 44. Li Z, Zhou W, Zhang X, Gao Y, Guo S. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: layered structure design and shielding mechanism. Sci Rep [Internet]. 2021 Dec [cited 2022 Oct 9];11(1):4384.
  • 45. Kamminga ME, de Wijs GA, Havenith RWA, Blake GR, Palstra TTM. The Role of Connectivity on Electronic Properties of Lead Iodide Perovskite-Derived Compounds. Inorg Chem [Internet]. 2017 Jul 17 [cited 2022 Oct 9];56(14):8408–14.
  • 46. İlhan M, Katı Mİ, Keskin İÇ, Güleryüz LF. Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M = Sr, Ba, Pb) phosphors and comparison on the basis of Judd-Ofelt parameters. Journal of Alloys and Compounds [Internet]. 2022 Apr [cited 2022 Oct 9];901:163626.
  • 47. İlhan M, Keskin İÇ, Güleryüz LF, Katı Mİ. A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters. J Mater Sci: Mater Electron [Internet]. 2022 Jul [cited 2022 Oct 9];33(20):16606–20.
  • 48. İlhan M, Keskin İÇ. Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb 2 O 6 :Dy 3+ phosphors synthesized via molten salt method. Phys Chem Chem Phys [Internet]. 2020 [cited 2022 Oct 9];22(35):19769–78.

Influence of europium doping on the crystallization, morphology, and the cathodoluminescent properties of PbNb2O6:Eu3+ phosphors

Year 2022, , 1129 - 1140, 30.11.2022
https://doi.org/10.18596/jotcsa.1141909

Abstract

Undoped PbNb2O6 and Eu3+ ion doped PbNb2O6 samples were synthesized by high temperature mixed oxide method, applying a heat treatment temperature of 1250°C and an annealing time of 6 hours. In order to elucidate the structural and optical behavior of PbNb2O6:Eu3+ phosphors, XRD (X-ray diffraction), SEM (scanning electron microscopy), EDS (energy dispersive spectroscopy), CL (cathodoluminescence) and absoption analyses were performed. The X-ray diffraction results showed that the undoped PbNb2O6 sample crystallized in a rhombohedral symmetry while Eu3+ doped samples formed in orthorhombic symmetry. The morphologies of the rhombohedral and orthorhombic grains were examined by SEM-EDS. The CL spectra showed spectral profiles between 580 and 780 nm in relation to the 4f–4f transitions of Eu3+. A strong emission was observed at about 620 nm, corresponding to the red color and associated with the 5D0 → 7F2 transition of Eu3+, while the undoped sample did not exhibit CL emission of the host which is probably due to the presence of lead in the host structure. In addition, the CL analysis results showed that the emission intensity increased with the increase of Eu3+ ion concentration. The increase in magnetic dipole transition caused by the electron beam radiation effect of the CL with increasing doping concentration is associated with the change of dipole moments of the Eu3+ doped tungsten bronze host and thus differentiating the emission spectrum. UV lamp excited photograph of undoped sample showed blue-violet color while Eu3+ doped phosphors with red color became more significant with increasing Eu3+ concentration.

References

  • 1. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik [Internet]. 2017 Jan [cited 2022 Oct 9];128:26–33.
  • 2. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb 2 O 6 :Eu 3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv [Internet]. 2021 [cited 2022 Oct 9];11(18):10451–62.
  • 3. Ekmekçi MK, İlhan M, Başak AS, Deniz S. Structural and Luminescence Properties of Sm3+ Doped TTB -Type BaTa2O6 Ceramic Phosphors. J Fluoresc [Internet]. 2015 Nov [cited 2022 Oct 9];25(6):1757–62.
  • 4. İlhan M, Ekmekçi MK, Oraltay RG, Başak AS. Structural and Near-Infrared Properties of Nd3+ Activated Lu3NbO7 Phosphor. J Fluoresc [Internet]. 2017 Jan [cited 2022 Oct 9];27(1):199–203.
  • 5. İlhan M, Ekmekçi MK, Mergen A, Yaman C. Photoluminescence characterization and heat treatment effect on luminescence behavior of BaTa 2 O 6 :Dy 3+ phosphor. Int J Appl Ceram Technol [Internet]. 2017 Nov [cited 2022 Oct 9];14(6):1134–43.
  • 6. Ekmekçi MK, Erdem M, Başak AS, İlhan M, Mergen A. Molten salt synthesis and optical properties of Eu3+, Dy3+or Nd3+ doped NiNb2O6 columbite-type phosphors. Ceramics International [Internet]. 2015 Sep [cited 2022 Oct 9];41(8):9680–5.
  • 7. Ekmekçi MK, Erdem M, Başak AS. Molten salt synthesis, visible and near-IR region spectral properties of europium or neodymium doped CoNb 2 O 6 columbite niobate. Dalton Trans [Internet]. 2015 [cited 2022 Oct 9];44(12):5379–85.
  • 8. İlhan M. Synthesis, Structural Properties and Visible–Near Infrared Photoluminescence of Trivalent Erbium (Er3+) Doped BaTa2O6 Phosphor. AKU-J Sci Eng [Internet]. 2017 Aug 1 [cited 2022 Oct 9];17(2):675–82.
  • 9. Ekmekçi MK, İlhan M, Ege A, Ayvacıklı M. Microstructural and Radioluminescence Characteristics of Nd3+ Doped Columbite-Type SrNb2O6 Phosphor. J Fluoresc [Internet]. 2017 May [cited 2022 Oct 9];27(3):973–9.
  • 10. Binnemans K. Interpretation of europium(III) spectra. Coordination Chemistry Reviews [Internet]. 2015 Jul [cited 2022 Oct 9];295:1–45.
  • 11. Mitsui T, Yamamoto N, Tadokoro T, Ohta S. Cathodoluminescence image of defects and luminescence centers in ZnS/GaAs(100). Journal of Applied Physics [Internet]. 1996 Dec 15 [cited 2022 Oct 9];80(12):6972–9.
  • 12. Yacobi BG, Holt DB. Cathodoluminescence scanning electron microscopy of semiconductors. Journal of Applied Physics [Internet]. 1986 Feb 15 [cited 2022 Oct 9];59(4):R1–24.
  • 13. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem Pap [Internet]. 2022 Jul 31 [cited 2022 Oct 9];
  • 14. Edwards PR, Martin RW. Cathodoluminescence nano-characterization of semiconductors. Semicond Sci Technol [Internet]. 2011 Jun 1 [cited 2022 Oct 9];26(6):064005.
  • 15. Dierre B, Yuan X, Sekiguchi T. Low-energy cathodoluminescence microscopy for the characterization of nanostructures. Science and Technology of Advanced Materials [Internet]. 2010 Feb [cited 2022 Oct 9];11(4):043001.
  • 16. Ma DDD, Lee ST, Mueller P, Alvarado SF. Scanning Tunneling Microscope Excited Cathodoluminescence from ZnS Nanowires. Nano Lett [Internet]. 2006 May 1 [cited 2022 Oct 9];6(5):926–9.
  • 17. İlhan M, Ekmekçi MK, Demir A, Demirer H. Synthesis and Optical Properties of Novel Red-Emitting PbNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Sep [cited 2022 Oct 9];26(5):1637–43.
  • 18. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Physica B: Condensed Matter [Internet]. 2020 May [cited 2022 Oct 9];585:412106.
  • 19. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A. Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Mar [cited 2022 Oct 9];26(2):719–24. Available from: http://link.springer.com/10.1007/s10895-015-1759-y
  • 20. Francombe MH. Polymorphism in lead metaniobate. Acta Cryst [Internet]. 1956 Aug 1 [cited 2022 Oct 9];9(8):683–4.
  • 21. Roth RS, Waring JL. Phase equilibrium relations in the binary system barium oxide-niobium pentoxide. J RES NATL BUR STAN SECT A [Internet]. 1961 Jul [cited 2022 Oct 9];65A(4):337.
  • 22. Xiao Q, Zhou Q, Zhang J, Ouyang L. Photocatalytic decolorization of methylene blue over monoclinic pyrochlore-type Pb2Nb2O7 under visible light irradiation. Journal of Alloys and Compounds [Internet]. 2009 Jan [cited 2022 Oct 9];468(1–2):L9–12.
  • 23. Sahini MG, Grande T, Fraygola B, Biancoli A, Damjanovic D, Setter N. Solid Solutions of Lead Metaniobate-Stabilization of the Ferroelectric Polymorph and the Effect on the Lattice Parameters, Dielectric, Ferroelectric, and Piezoelectric Properties. Viehland D, editor. J Am Ceram Soc [Internet]. 2014 Jan [cited 2022 Oct 9];97(1):220–7.
  • 24. Francombe MH, Lewis B. Structural, dielectric and optical properties of ferroelectric lead metaniobate. Acta Cryst [Internet]. 1958 Oct 1 [cited 2022 Oct 9];11(10):696–703.
  • 25. Subbarao EC, Shirane G, Jona F. X-ray dielectric, and optical study of ferroelectric lead metatantalate and related compounds. Acta Cryst [Internet]. 1960 Mar 1 [cited 2022 Oct 9];13(3):226–31.
  • 26. Goodman G. Ferroelectric Properties of Lead Metaniobate. J American Ceramic Society [Internet]. 1953 Nov [cited 2022 Oct 9];36(11):368–72.
  • 27. Subbarao EC. X-Ray Study of Phase Transitions in Ferroelectric PbNb2O6 and Related Materials. J American Ceramic Society [Internet]. 1960 Sep [cited 2022 Oct 9];43(9):439–42.
  • 28. Chakraborty KR, Sahu KR, De A, De U. Structural Characterization of Orthorhombic and Rhombohedral Lead Meta-Niobate Samples. Integrated Ferroelectrics [Internet]. 2010 Nov 12 [cited 2022 Oct 9];120(1):102–13.
  • 29. Haertling GH. Ferroelectric Ceramics: History and Technology. Journal of the American Ceramic Society [Internet]. 1999 Apr [cited 2022 Oct 9];82(4):797–818.
  • 30. Sahu KR, De U. Thermal characterization of piezoelectric and non-piezoelectric Lead Meta-Niobate. Thermochimica Acta [Internet]. 2009 Jun [cited 2022 Oct 9];490(1–2):75–7.
  • 31. Sahu KR, De U. Impedance Spectroscopy of Piezoelectric 0.963PbNb2O6 – 0.037Ca0.6TiO3. Materials Today: Proceedings [Internet]. 2019 [cited 2022 Oct 9];11:859–68.
  • 32. Fang R, Zhou Z, Liang R, Dong X. Effects of CuO addition on the sinterability and electric properties in PbNb2O6-based ceramics. Ceramics International [Internet]. 2020 Oct [cited 2022 Oct 9];46(15):23505–9.
  • 33. Yu H, Liu Y, Deng C, Xia M, Zhang X, Zhang L, et al. Lithium storage behaviors of PbNb2O6 in rechargeable batteries. Ceramics International [Internet]. 2021 Oct [cited 2022 Oct 9];47(19):26732–7.
  • 34 Yoel A, Michael PEP, Kokate MV, Tabhane VA. Effect of gamma rays irradiation on ferroelectric phase transition and domain defect interaction in lead meta niobate single crystal. Physica B: Condensed Matter [Internet]. 2012 Feb [cited 2022 Oct 9];407(4):576–80.
  • 35. Raghavendra V, Viswarupachary P, Suryanarayana B, Chandra Mouli K, Vikram GNVR, Murali N. Dielectric and piezoelectric properties of Sm3+ doped lead barium niobate (PBN) ceramics. Physica B: Condensed Matter [Internet]. 2019 Mar [cited 2022 Oct 9];556:75–81.
  • 36. Aslam S, Rafique HM, Ramay SM, Akhtar N, Mustafa GM, Siddig AA, et al. Tuning the dielectric properties of PbNb2O6 perovskite through calcium substitution. Physica B: Condensed Matter [Internet]. 2022 Jun [cited 2022 Oct 9];635:413840.
  • 37. Li YM, Cheng L, Gu XY, Zhang YP, Liao RH. Piezoelectric and dielectric properties of PbNb2O6-based piezoelectric ceramics with high Curie temperature. Journal of Materials Processing Technology [Internet]. 2008 Feb [cited 2022 Oct 9];197(1–3):170–3.
  • 38. Guerrero F, Leyet Y, Venet M, de Los S. Guerra J, Eiras JA. Dielectric behavior of the PbNb2O6 ferroelectric ceramic in the frequency range of 20Hz to 2GHz. Journal of the European Ceramic Society [Internet]. 2007 Jan [cited 2022 Oct 9];27(13–15):4041–4.
  • 39. Neurgaonkar RR, Cory WK. Progress in photorefractive tungsten bronze crystals. J Opt Soc Am B [Internet]. 1986 Feb 1 [cited 2022 Oct 9];3(2):274.
  • 40. Xu Y. Ferroelectric tungsten-bronze-type niobate crystals. In: Ferroelectric materials and their applications [Internet]. Amsterdam ; New York : New York, NY, USA: North-Holland ; Sole distributors for the USA and Canada, Elsevier Science Pub. Co; 1991. p. 247–9.
  • 41. İlhan M, Keskin İÇ, Gültekin S. Assessing of Photoluminescence and Thermoluminescence Properties of Dy3+ Doped White Light Emitter TTB-Lead Metatantalate Phosphor. Journal of Elec Materi [Internet]. 2020 Apr [cited 2022 Oct 9];49(4):2436–49.
  • 42. İlhan M, Ekmekçi MK, Mergen A, Yaman C. Synthesis and Optical Characterization of Red-Emitting BaTa2O6:Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Sep [cited 2022 Oct 9];26(5):1671–8. .
  • 43. Coenen T, Haegel NM. Cathodoluminescence for the 21st century: Learning more from light. Applied Physics Reviews [Internet]. 2017 Sep [cited 2022 Oct 9];4(3):031103.
  • 44. Li Z, Zhou W, Zhang X, Gao Y, Guo S. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: layered structure design and shielding mechanism. Sci Rep [Internet]. 2021 Dec [cited 2022 Oct 9];11(1):4384.
  • 45. Kamminga ME, de Wijs GA, Havenith RWA, Blake GR, Palstra TTM. The Role of Connectivity on Electronic Properties of Lead Iodide Perovskite-Derived Compounds. Inorg Chem [Internet]. 2017 Jul 17 [cited 2022 Oct 9];56(14):8408–14.
  • 46. İlhan M, Katı Mİ, Keskin İÇ, Güleryüz LF. Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M = Sr, Ba, Pb) phosphors and comparison on the basis of Judd-Ofelt parameters. Journal of Alloys and Compounds [Internet]. 2022 Apr [cited 2022 Oct 9];901:163626.
  • 47. İlhan M, Keskin İÇ, Güleryüz LF, Katı Mİ. A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters. J Mater Sci: Mater Electron [Internet]. 2022 Jul [cited 2022 Oct 9];33(20):16606–20.
  • 48. İlhan M, Keskin İÇ. Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb 2 O 6 :Dy 3+ phosphors synthesized via molten salt method. Phys Chem Chem Phys [Internet]. 2020 [cited 2022 Oct 9];22(35):19769–78.
There are 48 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Mete Kaan Ekmekci 0000-0003-2847-3312

Publication Date November 30, 2022
Submission Date July 11, 2022
Acceptance Date September 19, 2022
Published in Issue Year 2022

Cite

Vancouver Ekmekci MK. Influence of europium doping on the crystallization, morphology, and the cathodoluminescent properties of PbNb2O6:Eu3+ phosphors. JOTCSA. 2022;9(4):1129-40.