Research Article
BibTex RIS Cite
Year 2023, , 745 - 756, 30.08.2023
https://doi.org/10.18596/jotcsa.1294230

Abstract

References

  • 1. Lohan R, Kumar A, Sahu MK, Mor A, Kumar V, Deopa N, Rao AS. Structural, thermal, and luminescence kinetics of Sr4Nb2O9 phosphor doped with Dy3+ ions for cool w-LED applications. J. Mater. Sci: Mater. Electron 2023;34:694.
  • 2. Kanmani GV, Ponnusamy V, Rajkumar G, Kennedy SMM. A new Eu3+-activated milarite-type potassium magnesium zinc silicate red-emitting phosphor for forensic applications. J. Mater Sci: Mater Electron 2023;34:765.
  • 3. Swathi BN, Krushna BRR, Manjunatha K, Wu SY, Subramanian B, Prasad BD, Nagabhushana H. Single phased vivid red-emitting CaLa2ZnO5:Eu3+ nanophosphor: WLEDs, visualization of latent fingerprints and anti-counterfeiting applications, Mater. Res. Bull. 2023;165:112279.
  • 4. Ekmekçi MK, İlhan M, Başak AS, Deniz S. Structural and luminescence properties of Sm3+ doped TTB-type BaTa2O6 ceramic phosphors. J. Fluoresc. 2015;25:1757–1762.
  • 5. Güleryüz LF. Effect of Nd3+ doping on structural, near-Infrared, and cathodoluminescent properties for cadmium tantalate phosphors. JOTCSA. 2023;10:77–88.
  • 6. Hajlaoui T, Pinsard M, Kalhori H, Légaré F, Pignolet A. Second harmonic generation in ferroelectric Ba2EuFeNb4O15-based epitaxial thin films. Opt. Mater. Express  2020;10: 1323–1334.
  • 7. İlhan M, Keskin İÇ. Evaluation of the Structural, near-infrared luminescence, and radioluminescence properties of Nd3+ activated TTB-lead metatantalate phosphors. JOTCSA. 2023;10:453–66.
  • 8. Sheikh S, Hussain F. Structural, Dielectric, and Magnetic Properties of Ba2Bi9-xFe5 +xTi8O39 tetragonal tungsten bronze ceramics. Mater. Res. Express 2023;10:036103.
  • 9. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem. Pap. 2022;76:6963-6974.
  • 10. Shrivastava R, Khaparde S. Luminescence studies of diopside doped with various concentrations of Dysprosium (III). Res. Chem. Intermed. 2022;48:969-982.
  • 11. Li J, Wang X, Cui R, Deng C. Synthesis and photoluminescence studies of novel double-perovskite phosphors, Ba2GdTaO6: Eu3+ for WLEDs. Optik 2020;201:163536.
  • 12. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6:Eu3+ phosphor. RSC. Adv. 2023;13:12375.
  • 13. Binnemans K. Interpretation of europium(III) spectra, Coord. Chem. Rev. 2015;295: 1–45.
  • 14. Walrand CG, Binnemans K. Handbook on the physics and chemistry of rare earths, Elsevier, Belgium, 1998, pp.101–264.
  • 15. Ekmekçi MK, İlhan M, Ege A, Ayvacıklı M. Microstructural and radioluminescence characteristics of Nd3+ doped columbite-type SrNb2O6 phosphor. J. Fluoresc. 2017;27:973–979.
  • 16. Pullar RC. The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6): A Critical Review. J. Am. Ceram. Soc., 92;2009:563–577.
  • 17. İlhan M, Ekmekçi MK, Oraltay RG, Başak AS. Structural and near-infrared properties of Nd3+ activated Lu3NbO7 Phosphor. J. Fluoresc. 2017;27:199–203.
  • 18. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6:Eu3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv. 2021;11:10451.
  • 19. Scharf W, Weitzel H, Yaeger I, Maartense I,  Wanklyn BM. Magnetic structures of CoNb2O6. J. Magn. Magn. Mater. 1979;13:121-124.
  • 20. Sarvezuk PWC, Kinast EJ, Colin CV, Gusmao MA, Cunha JBM da, Isnard O. New investigation of the magnetic structure of CoNb2O6 columbite. J. Appl. Phys. 2011;109: 07E160.
  • 21. Xu Y, Wang LS, Huang YY, Ni JM, Zhao CC, Dai YF, Pan BY, Hong XC, Chauhan P, Koohpayeh SM, Armitage NP, and Li SY. Quantum critical magnetic excitations in spin-1/2 and Spin-1 chain systems. Physical Review X 2022;12:021020.
  • 22. Lei S, Wang C, Guo D, Gao X, Cheng D, Zhou J, Cheng B, Xiao Y. Synthesis and magnetic properties of MNb2O6 (M = Fe, Co, Ni) nanoparticles. RSC Adv. 2014;4:52740.
  • 23. Ringler JA, Kolesnikov AI, Ross KA. Single-ion properties of the transverse-field Ising model material CoNb2O6. Phys. Rev. B 2022;105:224421.
  • 24. Zhang Y, Liu S, Zhang Y, Xiang M. Microwave dielectric properties of low-fired CoNb2O6 ceramics with B2O3 addition. J Mater Sci: Mater Electron 2016;27:11293–11298.
  • 25. Erdem R, İlhan M, Ekmekçi MK, Erdem Ö. Electrospinning, preparation and photoluminescence properties of CoNb2O6:Dy3+ incorporated polyamide 6 composite fibers. Appl. Surf. Sci. 2017;421:240-246.
  • 26. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik. 2017;128:26–33.
  • 27. Ekmekçi MK, Erdem M, Başak AS, Mergen A. Molten salt synthesis, visible and near-IR region spectral properties of europium or neodymium doped CoNb2O6 columbite niobate. Dalton Trans. 2015;44:5379.
  • 28. Balamurugan C, Maheswari AH, Lee DW. Structural, optical and selective ethanol sensing properties of p-type semiconducting CoNb2O6 nano powder. Sens. Actuators B Chem. 2014;205:289-297.
  • 29. Liu F, Wang B, Yang X, Guan Y, Sun R, Wang Q, Liang X, Sun P, Lu G. High-temperature stabilized zirconia-based sensors utilizing MNb2O6 (M: Co, Ni and Zn) sensing electrodes for detection of NO2. Sens. Actuators B Chem. 2016;232:523–530.
  • 30. Hanawa T, Shinkawa K, Ishikawa M, Miyatani K, Saito K, Kohn K. Anisotropic spesific heat of CoNb2O6 in magnetic fields. J. Phys. Soc. Japan 1994;63:2706-2715.
  • 31. Liang T, Koohpayeh SM, Krizan JW, McQueen TM, Cava RJ, Ong NP. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6. Nat. Commun. 2015;6:7611.
  • 32. Mulla IS, Natarajan N, Gaikwad AB, Samuel V, Guptha UN, Ravi V. A coprecipitation technique to prepare CoTa2O6 and CoNb2O6. Mater. Lett. 2007;61:2127–2129.
  • 33. Felten EJ, Sprang PG, Rosen S. Phase Relations in the System CoNb2O6-CoTa2O6. J. Am. Ceram. 1966;49:273-276.
  • 34. İlhan M, Keskin İÇ, Gültekin S. Assessing of photoluminescence and thermoluminescence properties of Dy3+ doped white light emitter TTB-lead metatantalate phosphor. J. Electron. Mater. 2020;49:2436-2449.
  • 35. Saraf R, Shivakumara C, Behera S, Nagabhushana H, Dhananjaya N. Photoluminescence, photocatalysis and Judd-Ofelt analysis of Eu3+-activated layered BiOCl phosphors. RSC Adv. 2015;5:4109–4120.
  • 36. Blasse G. Energy transfer between inequivalent Eu2+ ions. Solid State Chem. 1986;62:207–211.
  • 37. Blasse G. Energy transfer in oxidic phosphors. Philips Res. Rep. 1969;24:131-144.
  • 38. Van Uitert LG. Characterization of energy transfer interactions between rare earth ions. J. Electrochem. Soc. 1967;114:1048–1053.
  • 39. Judd BR. Optical Absorption Intensities of Rare-Earth Ions. Phys Rev. 1962;127:750.
  • 40. Ofelt GS. Intensities of crystal spectra of rare‐earth ions. J. Chem. Phys. 1962;37: 511.
  • 41. İlhan M, Keskin İÇ. Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb2O6:Dy3+ phosphors synthesized via molten saltudd BR. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962;127:750. method. Phys. Chem. Chem. Phys. 2020;22:19769.
  • 42. Batsanov SS. Structurnaya refractometria, Moscow ‘‘Visshaya Shkola’’, 1976.
  • 43. Shannon RD, Fischer RX. Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B. 2006;73:235111.
  • 44. Bokii GB, Koshits MAP. X-ray Structure Analysis, MSU, Moscow, 1964.
  • 45. Korotkov AS, Atuchin VV. Prediction of refractive index of inorganic compound by chemical formula. Opt. Commun. 2008;281:2132–2138.
  • 46. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Phys. B: Condens. Matter 2020;585:412106.
  • 47. İlhan M, Güleryüz LF, Keskin İÇ, Katı Mİ. A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters. Mater. Sci: Mater. Electron 2022;33:16606–16620.
  • 48. Werts MHV, Jukes RTF, Verhoeven JW. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys., 2002;4:1542–1548.

Structural Properties, Photoluminescence, and Judd-Ofelt Parameters of Eu3+- Doped CoNb2O6 Phosphor

Year 2023, , 745 - 756, 30.08.2023
https://doi.org/10.18596/jotcsa.1294230

Abstract

Trivalent Eu-activated CoNb2O6 phosphors were fabricated using the molten salt method, which provides enhanced homogeneity and low sintering temperature. The ceramic samples were examined by spectral and structural analyses. In X-ray diffractions, the single phase of orthorhombic columbite type CoNb2O6 structure was obtained for 0.5-10 mol% Eu3+ doping concentrations, while a two theta peak shift towards the smaller angles occurred. SEM examinations show an irregular morphology and sub-micron grain sizes. In photoluminescence (PL) spectra, the phosphors showed typical Eu3+ emissions with the 5F0 → 7FJ (J=0, 1, 2, 3, 4) transitions, and high emission peaks were observed at the 5D0 → 7F2 transition. The photoluminescence of CoNb2O6:Eu3+ decreased over 5 mol% because of the concentration quenching. The energy transfer mechanism and critical distance of the phosphor are the dipole-dipole (d–d) interaction, and 15.70 Å, respectively. The spectral features of the phosphors were assessed by calculating the Judd-Ofelt intensity parameters (Ω2, Ω4) from the PL emission spectrum. The low Ω2 parameter values or/and the Ω4>Ω2 trend for CoNb2O6:Eu3+ phosphors were related to the less covalent or more ionic character of the Eu3+–O2˗ bond and the high local symmetry of the Eu3+ sites, while the high Ω4 parameter values may be ascribed to the decrease in the electron density in the ligands.

References

  • 1. Lohan R, Kumar A, Sahu MK, Mor A, Kumar V, Deopa N, Rao AS. Structural, thermal, and luminescence kinetics of Sr4Nb2O9 phosphor doped with Dy3+ ions for cool w-LED applications. J. Mater. Sci: Mater. Electron 2023;34:694.
  • 2. Kanmani GV, Ponnusamy V, Rajkumar G, Kennedy SMM. A new Eu3+-activated milarite-type potassium magnesium zinc silicate red-emitting phosphor for forensic applications. J. Mater Sci: Mater Electron 2023;34:765.
  • 3. Swathi BN, Krushna BRR, Manjunatha K, Wu SY, Subramanian B, Prasad BD, Nagabhushana H. Single phased vivid red-emitting CaLa2ZnO5:Eu3+ nanophosphor: WLEDs, visualization of latent fingerprints and anti-counterfeiting applications, Mater. Res. Bull. 2023;165:112279.
  • 4. Ekmekçi MK, İlhan M, Başak AS, Deniz S. Structural and luminescence properties of Sm3+ doped TTB-type BaTa2O6 ceramic phosphors. J. Fluoresc. 2015;25:1757–1762.
  • 5. Güleryüz LF. Effect of Nd3+ doping on structural, near-Infrared, and cathodoluminescent properties for cadmium tantalate phosphors. JOTCSA. 2023;10:77–88.
  • 6. Hajlaoui T, Pinsard M, Kalhori H, Légaré F, Pignolet A. Second harmonic generation in ferroelectric Ba2EuFeNb4O15-based epitaxial thin films. Opt. Mater. Express  2020;10: 1323–1334.
  • 7. İlhan M, Keskin İÇ. Evaluation of the Structural, near-infrared luminescence, and radioluminescence properties of Nd3+ activated TTB-lead metatantalate phosphors. JOTCSA. 2023;10:453–66.
  • 8. Sheikh S, Hussain F. Structural, Dielectric, and Magnetic Properties of Ba2Bi9-xFe5 +xTi8O39 tetragonal tungsten bronze ceramics. Mater. Res. Express 2023;10:036103.
  • 9. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem. Pap. 2022;76:6963-6974.
  • 10. Shrivastava R, Khaparde S. Luminescence studies of diopside doped with various concentrations of Dysprosium (III). Res. Chem. Intermed. 2022;48:969-982.
  • 11. Li J, Wang X, Cui R, Deng C. Synthesis and photoluminescence studies of novel double-perovskite phosphors, Ba2GdTaO6: Eu3+ for WLEDs. Optik 2020;201:163536.
  • 12. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6:Eu3+ phosphor. RSC. Adv. 2023;13:12375.
  • 13. Binnemans K. Interpretation of europium(III) spectra, Coord. Chem. Rev. 2015;295: 1–45.
  • 14. Walrand CG, Binnemans K. Handbook on the physics and chemistry of rare earths, Elsevier, Belgium, 1998, pp.101–264.
  • 15. Ekmekçi MK, İlhan M, Ege A, Ayvacıklı M. Microstructural and radioluminescence characteristics of Nd3+ doped columbite-type SrNb2O6 phosphor. J. Fluoresc. 2017;27:973–979.
  • 16. Pullar RC. The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6): A Critical Review. J. Am. Ceram. Soc., 92;2009:563–577.
  • 17. İlhan M, Ekmekçi MK, Oraltay RG, Başak AS. Structural and near-infrared properties of Nd3+ activated Lu3NbO7 Phosphor. J. Fluoresc. 2017;27:199–203.
  • 18. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6:Eu3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv. 2021;11:10451.
  • 19. Scharf W, Weitzel H, Yaeger I, Maartense I,  Wanklyn BM. Magnetic structures of CoNb2O6. J. Magn. Magn. Mater. 1979;13:121-124.
  • 20. Sarvezuk PWC, Kinast EJ, Colin CV, Gusmao MA, Cunha JBM da, Isnard O. New investigation of the magnetic structure of CoNb2O6 columbite. J. Appl. Phys. 2011;109: 07E160.
  • 21. Xu Y, Wang LS, Huang YY, Ni JM, Zhao CC, Dai YF, Pan BY, Hong XC, Chauhan P, Koohpayeh SM, Armitage NP, and Li SY. Quantum critical magnetic excitations in spin-1/2 and Spin-1 chain systems. Physical Review X 2022;12:021020.
  • 22. Lei S, Wang C, Guo D, Gao X, Cheng D, Zhou J, Cheng B, Xiao Y. Synthesis and magnetic properties of MNb2O6 (M = Fe, Co, Ni) nanoparticles. RSC Adv. 2014;4:52740.
  • 23. Ringler JA, Kolesnikov AI, Ross KA. Single-ion properties of the transverse-field Ising model material CoNb2O6. Phys. Rev. B 2022;105:224421.
  • 24. Zhang Y, Liu S, Zhang Y, Xiang M. Microwave dielectric properties of low-fired CoNb2O6 ceramics with B2O3 addition. J Mater Sci: Mater Electron 2016;27:11293–11298.
  • 25. Erdem R, İlhan M, Ekmekçi MK, Erdem Ö. Electrospinning, preparation and photoluminescence properties of CoNb2O6:Dy3+ incorporated polyamide 6 composite fibers. Appl. Surf. Sci. 2017;421:240-246.
  • 26. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik. 2017;128:26–33.
  • 27. Ekmekçi MK, Erdem M, Başak AS, Mergen A. Molten salt synthesis, visible and near-IR region spectral properties of europium or neodymium doped CoNb2O6 columbite niobate. Dalton Trans. 2015;44:5379.
  • 28. Balamurugan C, Maheswari AH, Lee DW. Structural, optical and selective ethanol sensing properties of p-type semiconducting CoNb2O6 nano powder. Sens. Actuators B Chem. 2014;205:289-297.
  • 29. Liu F, Wang B, Yang X, Guan Y, Sun R, Wang Q, Liang X, Sun P, Lu G. High-temperature stabilized zirconia-based sensors utilizing MNb2O6 (M: Co, Ni and Zn) sensing electrodes for detection of NO2. Sens. Actuators B Chem. 2016;232:523–530.
  • 30. Hanawa T, Shinkawa K, Ishikawa M, Miyatani K, Saito K, Kohn K. Anisotropic spesific heat of CoNb2O6 in magnetic fields. J. Phys. Soc. Japan 1994;63:2706-2715.
  • 31. Liang T, Koohpayeh SM, Krizan JW, McQueen TM, Cava RJ, Ong NP. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6. Nat. Commun. 2015;6:7611.
  • 32. Mulla IS, Natarajan N, Gaikwad AB, Samuel V, Guptha UN, Ravi V. A coprecipitation technique to prepare CoTa2O6 and CoNb2O6. Mater. Lett. 2007;61:2127–2129.
  • 33. Felten EJ, Sprang PG, Rosen S. Phase Relations in the System CoNb2O6-CoTa2O6. J. Am. Ceram. 1966;49:273-276.
  • 34. İlhan M, Keskin İÇ, Gültekin S. Assessing of photoluminescence and thermoluminescence properties of Dy3+ doped white light emitter TTB-lead metatantalate phosphor. J. Electron. Mater. 2020;49:2436-2449.
  • 35. Saraf R, Shivakumara C, Behera S, Nagabhushana H, Dhananjaya N. Photoluminescence, photocatalysis and Judd-Ofelt analysis of Eu3+-activated layered BiOCl phosphors. RSC Adv. 2015;5:4109–4120.
  • 36. Blasse G. Energy transfer between inequivalent Eu2+ ions. Solid State Chem. 1986;62:207–211.
  • 37. Blasse G. Energy transfer in oxidic phosphors. Philips Res. Rep. 1969;24:131-144.
  • 38. Van Uitert LG. Characterization of energy transfer interactions between rare earth ions. J. Electrochem. Soc. 1967;114:1048–1053.
  • 39. Judd BR. Optical Absorption Intensities of Rare-Earth Ions. Phys Rev. 1962;127:750.
  • 40. Ofelt GS. Intensities of crystal spectra of rare‐earth ions. J. Chem. Phys. 1962;37: 511.
  • 41. İlhan M, Keskin İÇ. Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb2O6:Dy3+ phosphors synthesized via molten saltudd BR. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962;127:750. method. Phys. Chem. Chem. Phys. 2020;22:19769.
  • 42. Batsanov SS. Structurnaya refractometria, Moscow ‘‘Visshaya Shkola’’, 1976.
  • 43. Shannon RD, Fischer RX. Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B. 2006;73:235111.
  • 44. Bokii GB, Koshits MAP. X-ray Structure Analysis, MSU, Moscow, 1964.
  • 45. Korotkov AS, Atuchin VV. Prediction of refractive index of inorganic compound by chemical formula. Opt. Commun. 2008;281:2132–2138.
  • 46. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Phys. B: Condens. Matter 2020;585:412106.
  • 47. İlhan M, Güleryüz LF, Keskin İÇ, Katı Mİ. A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters. Mater. Sci: Mater. Electron 2022;33:16606–16620.
  • 48. Werts MHV, Jukes RTF, Verhoeven JW. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys., 2002;4:1542–1548.
There are 48 citations in total.

Details

Primary Language English
Subjects Instrumental Methods, Inorganic Chemistry
Journal Section RESEARCH ARTICLES
Authors

Mustafa İlhan 0000-0001-7826-9614

Lütfiye Feray Güleryüz 0000-0003-0052-6187

Mete Kaan Ekmekci 0000-0003-2847-3312

Publication Date August 30, 2023
Submission Date May 8, 2023
Acceptance Date June 23, 2023
Published in Issue Year 2023

Cite

Vancouver İlhan M, Güleryüz LF, Ekmekci MK. Structural Properties, Photoluminescence, and Judd-Ofelt Parameters of Eu3+- Doped CoNb2O6 Phosphor. JOTCSA. 2023;10(3):745-56.