BibTex RIS Cite

UNDERSTANDING THE BEHAVIOUR OF SULPHUR-CENTRED RADICALS DURING POLYMER SELF-HEALING

Year 2016, , 707 - 720, 08.01.2017
https://doi.org/10.18596/jotcsa.287305

Abstract

High-level ab initio molecular orbital theory calculations have been used to study self-healing mechanism of materials based on thiuram disulfides and their derivatives (S=C(Z)S–SC(Z)=S, for Z = CH3, NEt2, N(Et)CH2CH2OH, Ph, Bz), and the effects of these Z-substituents on their efficacy. The relative contributions of cross-over and reversible addition fragmentation chain transfer reactions were ascertained, and the likelihood of chain-breaking side reactions was assessed. To rationalize the results, the various stabilization energies of the radicals and closed-shell species were also evaluated. The study revealed that the self-healing mechanism of thiuram disulfides follows predominantly the cross-over reaction because of the high energies of intermediate radicals in the chain transfer mechanism. Based on the study, the most effective self-healing materials are predicted to contain amines as Z-groups, while those containing benzyl and its derivatives are most likely to undergo side reactions.

References

  • Caruso, M.M., et al., Mechanically-Induced Chemical Changes in Polymeric Materials. Chemical Reviews, 2009. 109(11): p. 5755-5798. Doi: 10.1021/cr9001353.
  • Murphy, E.B. and F. Wudl, The world of smart healable materials. Progress in Polymer Science, 2010. 35(1-2): p. 223-251. Doi:10.1016/j.progpolymsci.2009.10.006.
  • Urban, M.W., Stratification, stimuli-responsiveness, self-healing, and signaling in polymer networks. Progress in Polymer Science, 2009. 34(8): p. 679-687. Doi:10.1016/j.progpolymsci.2009.03.004.
  • Wu, D.Y., S. Meure, and D. Solomon, Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 2008. 33(5): p. 479-522. Doi:10.1016/j.progpolymsci.2008.02.001.
  • Kolmakov, G.V., K. Matyjaszewski, and A.C. Balazs, Harnessing Labile Bonds between Nanogel Particles to Create Self-Healing Materials. Acs Nano, 2009. 3(4): p. 885-892. Doi: 10.1021/nn900052h.
  • Cordier, P., et al., Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 2008. 451(7181): p. 977-980. Doi:10.1038/nature06669.
  • Wang, Q., et al., High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 2010. 463(7279): p. 339-343. Doi: 10.1038/nature08693.
  • Rowan, S.J., et al., Dynamic covalent chemistry. Angewandte Chemie-International Edition, 2002. 41(6): p. 898-952. Doi:10.1002/1521-3773(20020315)41:6<898::Aid-Anie898>3.0.Co;2-E.
  • Maeda, T., H. Otsuka, and A. Takahara, Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Progress in Polymer Science, 2009. 34(7): p. 581-604. Doi: 10.1016/j.progpolymsci.2009.03.001.
  • Deng, G.H., et al., Covalent Cross-Linked Polymer Gels with Reversible Sol-Gel Transition and Self-Healing Properties. Macromolecules, 2010. 43(3): p. 1191-1194. Doi: 10.1021/ma9022197.
  • Nicolay, R., et al., Responsive Gels Based on a Dynamic Covalent Trithiocarbonate Cross-Linker. Macromolecules, 2010. 43(9): p. 4355-4361. Doi: 10.1021/ma100378r.
  • Kamada, J., et al., Redox Responsive Behavior of Thiol/Disulfide-Functionalized Star Polymers Synthesized via Atom Transfer Radical Polymerization. Macromolecules, 2010. 43(9): p. 4133-4139. Doi: 10.1021/ma100365n.
  • Amamoto, Y., et al., Programmed thermodynamic formation and structure analysis of star-like nanogels with core cross-linked by thermally exchangeable dynamic covalent bonds. Journal of the American Chemical Society, 2007. 129(43): p. 13298-13304. Doi: 10.1021/ja075447n.
  • Amamoto, Y., et al., Reorganizable Chemical Polymer Gels Based on Dynamic Covalent Exchange and Controlled Monomer Insertion. Macromolecules, 2009. 42(22): p. 8733-8738. Doi: 10.1021/ma901746n.
  • Chen, X.X., et al., A thermally re-mendable cross-linked polymeric material. Science, 2002. 295(5560): p. 1698-1702. Doi: DOI 10.1126/science.1065879.
  • Amamoto, Y., et al., Polymers through Reshuffling of Trithiocarbonate Units. Angewandte Chemie-International Edition, 2011. 50(7): p. 1660-1663. Doi: 10.1002/anie.201003888.
  • Ghosh, B. and M.W. Urban, Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks. Science, 2009.
  • (5920): p. 1458-1460. Doi: 10.1126/science.1167391.
  • Scott, T.F., et al., Photoinduced plasticity in cross-linked polymers. Science, 2005. 308(5728): p. 1615-1617. Doi: 10.1126/science.1110505.
  • Amamoto, Y., et al., Self-Healing of Covalently Cross-Linked Polymers by Reshuffling Thiuram Disulfide Moieties in Air under Visible Light. Advanced Materials, 2012. 24(29): p. 3975-3980. Doi: 10.1002/adma.201201928.
  • Garcia-Con, L.M., et al., A Sulfur-Sulfur Cross-Linked Polymer Synthesized from a Polymerizable Dithiocarbamate as a Source of Dormant Radicals. Angewandte Chemie-International Edition, 2010. 49(24): p. 4075-4078. Doi: 10.1002/anie.200906676.
  • Frisch, M., G. Trucks, and H. Schlegel, et al. GAUSSIAN09, Revision D. 01, Gaussian, Inc., Wallingford, CT, 2004. 90 Y. Zhao and DG Truhlar, MN-GFM 4.3. University of Minnesota, Minneapolis, 2009.
  • H.-J. Werner, P.J.K., G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang . MOLPRO 2012.1. 2015 [cited 2015; Available from: http://www.molpro.net/.
  • Zhao, Y. and D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 2008. 120(1-3): p. 215-241. Doi: 10.1007/s00214-007-0310-x.
  • Henry, D.J., M.B. Sullivan, and L. Radom, G3-RAD and G3X-RAD: Modified Gaussian-3 (G3) and Gaussian-3X (G3X) procedures for radical thermochemistry. Journal of Chemical Physics, 2003. 118(11): p. 4849-4860. Doi: 10.1063/1.1544731.
  • Vreven, T. and K. Morokuma, Investigation of the S-0 -> S-1 excitation in bacteriorhodopsin with the ONIOM(MO : MM) hybrid method. Theoretical Chemistry Accounts, 2003. 109(3): p. 125-132. Doi: 10.1007/s00214-002-0418-y.
  • Atkins, P.W., Physical Chemistry. 4th ed. 1990, Oxford: Oxford University Press. ISBN 0–19–855284-X.
  • Kroschwitz, J.I., These formulae are described in full in Coote, M. L. , in Encyclopedia of Polymer Science and Technology, Wiley, Editor. 2004: New York. p. 319-371. ISBN: 978-0-471-27507-7.
  • Coote, M.L., C.Y. Lin, and A.A. Zavitsas, Inherent and transferable stabilization energies of carbon-and heteroatom-centred radicals on the same relative scale and their applications. Physical Chemistry Chemical Physics, 2014. 16(18): p. 8686-8696. Doi: 10.1039/c4cp00537f.
  • Coote, M.L. and A.A. Zavitsas, Using inherent radical stabilization energies to predict unknown enthalpies of formation and associated bond dissociation energies of complex molecules. Tetrahedron, 2016. Doi:10.1016/j.tet.2016.03.015.
  • Matsunaga, N., D.W. Rogers, and A.A. Zavitsas, Pauling's electronegativity equation and a new corollary accurately predict bond dissociation enthalpies and enhance current understanding of the nature of the chemical bond. Journal of Organic Chemistry, 2003. 68(8): p. 3158-3172. Doi: 10.1021/jo020650g.
  • Pauling, L., The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Vol. 18. 1960: Cornell university press. ISBN-10: 0801403332.
  • De Vleeschouwer, F., et al., An Intrinsic Radical Stability Scale from the Perspective of Bond Dissociation Enthalpies: A Companion to Radical Electrophilicities. Journal of Organic Chemistry, 2008. 73(22): p. 9109-9120. Doi: 10.1021/jo802018b.
  • Degirmenci, I. and M.L. Coote, Comparison of Thiyl, Alkoxyl, and Alkyl Radical Addition to Double Bonds: The Unusual Contrasting Behavior of Sulfur and Oxygen Radical Chemistry. Journal of Physical Chemistry A, 2016. 120(10): p. 1750-1755. DOI: 10.1021/acs.jpca.6b00538.
  • Moad, G., E. Rizzardo, and S.H. Thang, Living Radical Polymerization by the RAFT Process - A Third Update. Australian Journal of Chemistry, 2012. 65(8): p. 985-1076. Doi: 10.1071/Ch12295.
  • Fischer, H. and L. Radom, Factors controlling the addition of carbon-centered radicals to alkenes-an experimental and theoretical perspective. Angewandte Chemie-International Edition, 2001. 40(8): p. 1340-1371. Doi: Doi 10.1002/1521-3773(20010417)40:8<1340::Aid-Anie1340>3.0.Co;2-#.
  • Greenwald, E.E., et al., A two transition state model for radical-molecule reactions: A case study of the addition of OH to C2H4. Journal of Physical Chemistry A, 2005. 109(27): p. 6031-6044.
  • Senosiain, J.P., S.J. Klippenstein, and J.A. Miller, Reaction of ethylene with hydroxyl radicals: A theoretical study. Journal of Physical Chemistry A, 2006. 110(21): p. 6960-6970.Doi: 10.1021/jp0566820.
  • Golden, D.M., The Reaction OH+C2H4: An Example of Rotational Channel Switching. Journal of Physical Chemistry A, 2012. 116(17): p. 4259-4266. Doi: 10.1021/jp302009t.
  • Zhu, R.S., J. Park, and M.C. Lin, Ab initio kinetic study on the low-energy paths of the HO+C2H4 reaction. Chemical Physics Letters, 2005. 408(1-3): p. 25-30. Doi: 10.1016/j.cplett.2005.03.133.
Year 2016, , 707 - 720, 08.01.2017
https://doi.org/10.18596/jotcsa.287305

Abstract

References

  • Caruso, M.M., et al., Mechanically-Induced Chemical Changes in Polymeric Materials. Chemical Reviews, 2009. 109(11): p. 5755-5798. Doi: 10.1021/cr9001353.
  • Murphy, E.B. and F. Wudl, The world of smart healable materials. Progress in Polymer Science, 2010. 35(1-2): p. 223-251. Doi:10.1016/j.progpolymsci.2009.10.006.
  • Urban, M.W., Stratification, stimuli-responsiveness, self-healing, and signaling in polymer networks. Progress in Polymer Science, 2009. 34(8): p. 679-687. Doi:10.1016/j.progpolymsci.2009.03.004.
  • Wu, D.Y., S. Meure, and D. Solomon, Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 2008. 33(5): p. 479-522. Doi:10.1016/j.progpolymsci.2008.02.001.
  • Kolmakov, G.V., K. Matyjaszewski, and A.C. Balazs, Harnessing Labile Bonds between Nanogel Particles to Create Self-Healing Materials. Acs Nano, 2009. 3(4): p. 885-892. Doi: 10.1021/nn900052h.
  • Cordier, P., et al., Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 2008. 451(7181): p. 977-980. Doi:10.1038/nature06669.
  • Wang, Q., et al., High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 2010. 463(7279): p. 339-343. Doi: 10.1038/nature08693.
  • Rowan, S.J., et al., Dynamic covalent chemistry. Angewandte Chemie-International Edition, 2002. 41(6): p. 898-952. Doi:10.1002/1521-3773(20020315)41:6<898::Aid-Anie898>3.0.Co;2-E.
  • Maeda, T., H. Otsuka, and A. Takahara, Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Progress in Polymer Science, 2009. 34(7): p. 581-604. Doi: 10.1016/j.progpolymsci.2009.03.001.
  • Deng, G.H., et al., Covalent Cross-Linked Polymer Gels with Reversible Sol-Gel Transition and Self-Healing Properties. Macromolecules, 2010. 43(3): p. 1191-1194. Doi: 10.1021/ma9022197.
  • Nicolay, R., et al., Responsive Gels Based on a Dynamic Covalent Trithiocarbonate Cross-Linker. Macromolecules, 2010. 43(9): p. 4355-4361. Doi: 10.1021/ma100378r.
  • Kamada, J., et al., Redox Responsive Behavior of Thiol/Disulfide-Functionalized Star Polymers Synthesized via Atom Transfer Radical Polymerization. Macromolecules, 2010. 43(9): p. 4133-4139. Doi: 10.1021/ma100365n.
  • Amamoto, Y., et al., Programmed thermodynamic formation and structure analysis of star-like nanogels with core cross-linked by thermally exchangeable dynamic covalent bonds. Journal of the American Chemical Society, 2007. 129(43): p. 13298-13304. Doi: 10.1021/ja075447n.
  • Amamoto, Y., et al., Reorganizable Chemical Polymer Gels Based on Dynamic Covalent Exchange and Controlled Monomer Insertion. Macromolecules, 2009. 42(22): p. 8733-8738. Doi: 10.1021/ma901746n.
  • Chen, X.X., et al., A thermally re-mendable cross-linked polymeric material. Science, 2002. 295(5560): p. 1698-1702. Doi: DOI 10.1126/science.1065879.
  • Amamoto, Y., et al., Polymers through Reshuffling of Trithiocarbonate Units. Angewandte Chemie-International Edition, 2011. 50(7): p. 1660-1663. Doi: 10.1002/anie.201003888.
  • Ghosh, B. and M.W. Urban, Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks. Science, 2009.
  • (5920): p. 1458-1460. Doi: 10.1126/science.1167391.
  • Scott, T.F., et al., Photoinduced plasticity in cross-linked polymers. Science, 2005. 308(5728): p. 1615-1617. Doi: 10.1126/science.1110505.
  • Amamoto, Y., et al., Self-Healing of Covalently Cross-Linked Polymers by Reshuffling Thiuram Disulfide Moieties in Air under Visible Light. Advanced Materials, 2012. 24(29): p. 3975-3980. Doi: 10.1002/adma.201201928.
  • Garcia-Con, L.M., et al., A Sulfur-Sulfur Cross-Linked Polymer Synthesized from a Polymerizable Dithiocarbamate as a Source of Dormant Radicals. Angewandte Chemie-International Edition, 2010. 49(24): p. 4075-4078. Doi: 10.1002/anie.200906676.
  • Frisch, M., G. Trucks, and H. Schlegel, et al. GAUSSIAN09, Revision D. 01, Gaussian, Inc., Wallingford, CT, 2004. 90 Y. Zhao and DG Truhlar, MN-GFM 4.3. University of Minnesota, Minneapolis, 2009.
  • H.-J. Werner, P.J.K., G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang . MOLPRO 2012.1. 2015 [cited 2015; Available from: http://www.molpro.net/.
  • Zhao, Y. and D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 2008. 120(1-3): p. 215-241. Doi: 10.1007/s00214-007-0310-x.
  • Henry, D.J., M.B. Sullivan, and L. Radom, G3-RAD and G3X-RAD: Modified Gaussian-3 (G3) and Gaussian-3X (G3X) procedures for radical thermochemistry. Journal of Chemical Physics, 2003. 118(11): p. 4849-4860. Doi: 10.1063/1.1544731.
  • Vreven, T. and K. Morokuma, Investigation of the S-0 -> S-1 excitation in bacteriorhodopsin with the ONIOM(MO : MM) hybrid method. Theoretical Chemistry Accounts, 2003. 109(3): p. 125-132. Doi: 10.1007/s00214-002-0418-y.
  • Atkins, P.W., Physical Chemistry. 4th ed. 1990, Oxford: Oxford University Press. ISBN 0–19–855284-X.
  • Kroschwitz, J.I., These formulae are described in full in Coote, M. L. , in Encyclopedia of Polymer Science and Technology, Wiley, Editor. 2004: New York. p. 319-371. ISBN: 978-0-471-27507-7.
  • Coote, M.L., C.Y. Lin, and A.A. Zavitsas, Inherent and transferable stabilization energies of carbon-and heteroatom-centred radicals on the same relative scale and their applications. Physical Chemistry Chemical Physics, 2014. 16(18): p. 8686-8696. Doi: 10.1039/c4cp00537f.
  • Coote, M.L. and A.A. Zavitsas, Using inherent radical stabilization energies to predict unknown enthalpies of formation and associated bond dissociation energies of complex molecules. Tetrahedron, 2016. Doi:10.1016/j.tet.2016.03.015.
  • Matsunaga, N., D.W. Rogers, and A.A. Zavitsas, Pauling's electronegativity equation and a new corollary accurately predict bond dissociation enthalpies and enhance current understanding of the nature of the chemical bond. Journal of Organic Chemistry, 2003. 68(8): p. 3158-3172. Doi: 10.1021/jo020650g.
  • Pauling, L., The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Vol. 18. 1960: Cornell university press. ISBN-10: 0801403332.
  • De Vleeschouwer, F., et al., An Intrinsic Radical Stability Scale from the Perspective of Bond Dissociation Enthalpies: A Companion to Radical Electrophilicities. Journal of Organic Chemistry, 2008. 73(22): p. 9109-9120. Doi: 10.1021/jo802018b.
  • Degirmenci, I. and M.L. Coote, Comparison of Thiyl, Alkoxyl, and Alkyl Radical Addition to Double Bonds: The Unusual Contrasting Behavior of Sulfur and Oxygen Radical Chemistry. Journal of Physical Chemistry A, 2016. 120(10): p. 1750-1755. DOI: 10.1021/acs.jpca.6b00538.
  • Moad, G., E. Rizzardo, and S.H. Thang, Living Radical Polymerization by the RAFT Process - A Third Update. Australian Journal of Chemistry, 2012. 65(8): p. 985-1076. Doi: 10.1071/Ch12295.
  • Fischer, H. and L. Radom, Factors controlling the addition of carbon-centered radicals to alkenes-an experimental and theoretical perspective. Angewandte Chemie-International Edition, 2001. 40(8): p. 1340-1371. Doi: Doi 10.1002/1521-3773(20010417)40:8<1340::Aid-Anie1340>3.0.Co;2-#.
  • Greenwald, E.E., et al., A two transition state model for radical-molecule reactions: A case study of the addition of OH to C2H4. Journal of Physical Chemistry A, 2005. 109(27): p. 6031-6044.
  • Senosiain, J.P., S.J. Klippenstein, and J.A. Miller, Reaction of ethylene with hydroxyl radicals: A theoretical study. Journal of Physical Chemistry A, 2006. 110(21): p. 6960-6970.Doi: 10.1021/jp0566820.
  • Golden, D.M., The Reaction OH+C2H4: An Example of Rotational Channel Switching. Journal of Physical Chemistry A, 2012. 116(17): p. 4259-4266. Doi: 10.1021/jp302009t.
  • Zhu, R.S., J. Park, and M.C. Lin, Ab initio kinetic study on the low-energy paths of the HO+C2H4 reaction. Chemical Physics Letters, 2005. 408(1-3): p. 25-30. Doi: 10.1016/j.cplett.2005.03.133.
There are 40 citations in total.

Details

Journal Section Articles
Authors

İsa Degirmenci

Michelle L. Coote This is me

Publication Date January 8, 2017
Submission Date June 30, 2016
Published in Issue Year 2016

Cite

Vancouver Degirmenci İ, Coote ML. UNDERSTANDING THE BEHAVIOUR OF SULPHUR-CENTRED RADICALS DURING POLYMER SELF-HEALING. JOTCSA. 2017;3(3):707-20.