Research Article
BibTex RIS Cite

Spectral outputs of Yb3+/Pr3+ doped Tellurite glasses for solid-state lighting

Year 2022, , 21 - 28, 28.02.2022
https://doi.org/10.18596/jotcsa.993096

Abstract

Downconversion processes which include visible and near-infrared luminescence at high energy excitation have been investigated in Yb3+/Pr3+ doped TeO2-ZnO-BaO glasses. The decrease of the DC emission intensities of Pr3+ ions with increasing mole % amount of Pr3+ ions is attributed to the concentration quenching. The CIE chromaticity coordinates of the perceived emission of Pr3+ ions shifted from orange to the red region depending on the increase in the pump power. Consequently, Yb3+/Pr3+ doped TeO2-ZnO-BaO glasses could be used as functional optical materials for solid-state lighting applications.

Supporting Institution

Marmara University

Project Number

FEN-C-YLP-141118-0600

Thanks

The Scientific Research Projects Unit (BAPKO) of Marmara University financially supported this study with the FEN-C-YLP-141118-0600 grant number.

References

  • 1. Dexter DL. Possibility of Luminescent Quantum Yields Greater than Unity. Phys Rev. 1957 Nov 1;108(3):630–3.
  • 2. Caldiño U, Bettinelli M, Ferrari M, Pasquini E, Pelli S, Speghini A, et al. Rare Earth Doped Glasses for Displays and Light Generation. In 2014 [cited 2021 Nov 21]. p. 174–8.
  • 3. Belançon MP, Marconi JD, Ando MF, Barbosa LC. Near-IR emission in Pr3+single doped and tunable near-IR emission in Pr3+/Yb3+ codoped tellurite tungstate glasses for broadband optical amplifiers. Optical Materials. 2014 Apr;36(6):1020–6.
  • 4. Lakshminarayana G, Qiu J. Near-infrared quantum cutting in RE3+/Yb3+ (RE=Pr, Tb, and Tm): GeO2–B2O3–ZnO–LaF3 glasses via downconversion. Journal of Alloys and Compounds. 2009 Jul;481(1–2):582–9.
  • 5. Pask HM, Tropper AC, Hanna DC. A Pr3+-doped ZBLAN fibre upconversion laser pumped by an Yb3+-doped silica fibre laser. Optics Communications. 1997 Jan;134(1–6):139–44.
  • 6. Zhou X, Deng Y, Jiang S, Xiang G, Li L, Tang X, et al. Investigation of energy transfer in Pr3+, Yb3+ co-doped phosphate phosphor: The role of 3P0 and 1D2. Journal of Luminescence. 2019 May;209:45–51.
  • 7. Borrero-González LJ, Nunes LAO, Carmo JL, Astrath FBG, Baesso ML. Spectroscopic studies and downconversion luminescence in OH−-free Pr3+–Yb3+ co-doped low-silica calcium aluminosilicate glasses. Journal of Luminescence. 2014 Jan;145:615–9.
  • 8. Bose S, Debnath R. Strong crystal-field effect and efficient phonon assisted Yb3+→Tm3+ energy transfer in a (Yb3+/Tm3+) co-doped high barium–tellurite glass. Journal of Luminescence. 2014 Nov;155:210–7.
  • 9. Lousteau J, Boetti N, Chiasera A, Ferrari M, Abrate S, Scarciglia G, et al. Er(3+) and Ce(3+) Codoped Tellurite Optical Fiber for Lasers and Amplifiers in the Near-Infrared Wavelength Region: Fabrication, Optical Characterization, and Prospects. IEEE Photonics J. 2012 Feb;4(1):194–204.
  • 10. Wang R, Meng X, Yin F, Feng Y, Qin G, Qin W. Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 27 μm laser applications. Opt Mater Express. 2013 Aug 1;3(8):1127.
  • 11. Leal JJ, Narro-García R, Flores-De los Ríos JP, Gutierrez-Mendez N, Ramos-Sánchez VH, González-Castillo JR, et al. Effect of TiO2 on the thermal and optical properties of Er3+/Yb3+ co-doped tellurite glasses for optical sensor. Journal of Luminescence. 2019 Apr;208:342–9.
  • 12. Leal JJ, Narro-García R, Desirena H, Marconi JD, Rodríguez E, Linganna K, et al. Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+. Journal of Luminescence. 2015 Jun;162:72–80.
  • 13. Wang JS, Vogel EM, Snitzer E. Tellurite glass: a new candidate for fiber devices. Optical Materials. 1994 Aug;3(3):187–203.
  • 14. Elkhoshkhany N, Essam O, Embaby AM. Optical, thermal and antibacterial properties of tellurite glass system doped with ZnO. Materials Chemistry and Physics. 2018 Aug;214:489–98.
  • 15. Ramamoorthy RK, Bhatnagar AK. Effect of ZnO and PbO/ZnO on structural and thermal properties of tellurite glasses. Journal of Alloys and Compounds. 2015 Feb;623:49–54.
  • 16. Manikandan N, Ryasnyanskiy A, Toulouse J. Thermal and optical properties of TeO2–ZnO–BaO glasses. Journal of Non-Crystalline Solids. 2012 Mar;358(5):947–51.
  • 17. Burtan-Gwizdala B, Reben M, Cisowski J, Szpil S, Yousef ES, Lisiecki R, et al. Thermal and spectroscopic properties of Er3+-doped fluorotellurite glasses modified with TiO2 and BaO. Optical Materials. 2020 Sep;107:109968.
  • 18. Kuwik M, Pisarska J, Pisarski WA. Influence of Oxide Glass Modifiers on the Structural and Spectroscopic Properties of Phosphate Glasses for Visible and Near-Infrared Photonic Applications. Materials. 2020 Oct 23;13(21):4746.
  • 19. Rao VH, Prasad PS, Babu KS. Visible luminescence characteristics of Pr3+ ions in TeO2–Sb2O3–WO3 glasses. Optical Materials. 2020 Mar;101:109740.
  • 20. Rajesh D. Pr3+ doped new TZYN glasses and glass-ceramics containing NaYF4 nanocrystals: Luminescence analysis for visible and NIR applications. Optical Materials. 2018 Dec;86:178–84.
  • 21. Maalej O, Boulard B, Dieudonné B, Ferrari M, Dammak M, Dammak M. Downconversion in Pr3+–Yb3+ co-doped ZBLA fluoride glasses. Journal of Luminescence. 2015 May;161:198–201.
  • 22. Muscelli WC, Aquino FT, Caixeta FJ, Nunes LRR, Zur L, Ferrari M, et al. Yb3+ concentration influences UV–Vis to NIR energy conversion in nanostructured Pr3+ and Yb3+ co-doped SiO2-Nb2O5 materials for photonics. Journal of Luminescence. 2018 Jul;199:454–60.
  • 23. Lakshminarayana G, Qiu J. Near-infrared quantum cutting in RE3+/Yb3+ (RE=Pr, Tb, and Tm): GeO2–B2O3–ZnO–LaF3 glasses via downconversion. Journal of Alloys and Compounds. 2009 Jul;481(1–2):582–9.
  • 24. Rajesh D, Dousti MR, Amjad RJ, de Camargo ASS. Quantum cutting and up-conversion investigations in Pr 3+ /Yb 3+ co-doped oxyfluoro-tellurite glasses. Journal of Non-Crystalline Solids. 2016 Oct;450:149–55.
  • 25. Belançon MP, Marconi JD, Ando MF, Barbosa LC. Near-IR emission in Pr3+single doped and tunable near-IR emission in Pr3+/Yb3+ codoped tellurite tungstate glasses for broadband optical amplifiers. Optical Materials. 2014 Apr;36(6):1020–6.
  • 26. Seshadri M, Bell MJV, Anjos V, Messaddeq Y. Spectroscopic investigations on Yb3+ doped and Pr3+/Yb3+ codoped tellurite glasses for photonic applications. Journal of Rare Earths. 2021 Jan;39(1):33–42.
  • 27. Rao VH, Prasad PS, Babu KS. Visible luminescence characteristics of Pr3+ ions in TeO2–Sb2O3–WO3 glasses. Optical Materials. 2020 Mar;101:109740.
  • 28. Hegde V, Viswanath CSD, Chauhan N, Mahato KK, Kamath SD. Photoluminescence and thermally stimulated luminescence properties of Pr3+-doped zinc sodium bismuth borate glasses. Optical Materials. 2018 Oct;84:268–77.
  • 29. Zhou X, Wang G, Zhou K, Li Q. Near-infrared quantum cutting in Pr3+/Yb3+ co-doped transparent tellurate glass via two step energy transfer. Optical Materials. 2013 Jan;35(3):600–3.
  • 30. Liang L, Mo Z, Ju B, Xia C, Hou Z, Zhou G. Visible and Near-Infrared emission properties of Yb3+/Pr3+ co-doped lanthanum aluminum silicate glass. Journal of Non-Crystalline Solids. 2021 Apr;557:120578.
Year 2022, , 21 - 28, 28.02.2022
https://doi.org/10.18596/jotcsa.993096

Abstract

Project Number

FEN-C-YLP-141118-0600

References

  • 1. Dexter DL. Possibility of Luminescent Quantum Yields Greater than Unity. Phys Rev. 1957 Nov 1;108(3):630–3.
  • 2. Caldiño U, Bettinelli M, Ferrari M, Pasquini E, Pelli S, Speghini A, et al. Rare Earth Doped Glasses for Displays and Light Generation. In 2014 [cited 2021 Nov 21]. p. 174–8.
  • 3. Belançon MP, Marconi JD, Ando MF, Barbosa LC. Near-IR emission in Pr3+single doped and tunable near-IR emission in Pr3+/Yb3+ codoped tellurite tungstate glasses for broadband optical amplifiers. Optical Materials. 2014 Apr;36(6):1020–6.
  • 4. Lakshminarayana G, Qiu J. Near-infrared quantum cutting in RE3+/Yb3+ (RE=Pr, Tb, and Tm): GeO2–B2O3–ZnO–LaF3 glasses via downconversion. Journal of Alloys and Compounds. 2009 Jul;481(1–2):582–9.
  • 5. Pask HM, Tropper AC, Hanna DC. A Pr3+-doped ZBLAN fibre upconversion laser pumped by an Yb3+-doped silica fibre laser. Optics Communications. 1997 Jan;134(1–6):139–44.
  • 6. Zhou X, Deng Y, Jiang S, Xiang G, Li L, Tang X, et al. Investigation of energy transfer in Pr3+, Yb3+ co-doped phosphate phosphor: The role of 3P0 and 1D2. Journal of Luminescence. 2019 May;209:45–51.
  • 7. Borrero-González LJ, Nunes LAO, Carmo JL, Astrath FBG, Baesso ML. Spectroscopic studies and downconversion luminescence in OH−-free Pr3+–Yb3+ co-doped low-silica calcium aluminosilicate glasses. Journal of Luminescence. 2014 Jan;145:615–9.
  • 8. Bose S, Debnath R. Strong crystal-field effect and efficient phonon assisted Yb3+→Tm3+ energy transfer in a (Yb3+/Tm3+) co-doped high barium–tellurite glass. Journal of Luminescence. 2014 Nov;155:210–7.
  • 9. Lousteau J, Boetti N, Chiasera A, Ferrari M, Abrate S, Scarciglia G, et al. Er(3+) and Ce(3+) Codoped Tellurite Optical Fiber for Lasers and Amplifiers in the Near-Infrared Wavelength Region: Fabrication, Optical Characterization, and Prospects. IEEE Photonics J. 2012 Feb;4(1):194–204.
  • 10. Wang R, Meng X, Yin F, Feng Y, Qin G, Qin W. Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 27 μm laser applications. Opt Mater Express. 2013 Aug 1;3(8):1127.
  • 11. Leal JJ, Narro-García R, Flores-De los Ríos JP, Gutierrez-Mendez N, Ramos-Sánchez VH, González-Castillo JR, et al. Effect of TiO2 on the thermal and optical properties of Er3+/Yb3+ co-doped tellurite glasses for optical sensor. Journal of Luminescence. 2019 Apr;208:342–9.
  • 12. Leal JJ, Narro-García R, Desirena H, Marconi JD, Rodríguez E, Linganna K, et al. Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+. Journal of Luminescence. 2015 Jun;162:72–80.
  • 13. Wang JS, Vogel EM, Snitzer E. Tellurite glass: a new candidate for fiber devices. Optical Materials. 1994 Aug;3(3):187–203.
  • 14. Elkhoshkhany N, Essam O, Embaby AM. Optical, thermal and antibacterial properties of tellurite glass system doped with ZnO. Materials Chemistry and Physics. 2018 Aug;214:489–98.
  • 15. Ramamoorthy RK, Bhatnagar AK. Effect of ZnO and PbO/ZnO on structural and thermal properties of tellurite glasses. Journal of Alloys and Compounds. 2015 Feb;623:49–54.
  • 16. Manikandan N, Ryasnyanskiy A, Toulouse J. Thermal and optical properties of TeO2–ZnO–BaO glasses. Journal of Non-Crystalline Solids. 2012 Mar;358(5):947–51.
  • 17. Burtan-Gwizdala B, Reben M, Cisowski J, Szpil S, Yousef ES, Lisiecki R, et al. Thermal and spectroscopic properties of Er3+-doped fluorotellurite glasses modified with TiO2 and BaO. Optical Materials. 2020 Sep;107:109968.
  • 18. Kuwik M, Pisarska J, Pisarski WA. Influence of Oxide Glass Modifiers on the Structural and Spectroscopic Properties of Phosphate Glasses for Visible and Near-Infrared Photonic Applications. Materials. 2020 Oct 23;13(21):4746.
  • 19. Rao VH, Prasad PS, Babu KS. Visible luminescence characteristics of Pr3+ ions in TeO2–Sb2O3–WO3 glasses. Optical Materials. 2020 Mar;101:109740.
  • 20. Rajesh D. Pr3+ doped new TZYN glasses and glass-ceramics containing NaYF4 nanocrystals: Luminescence analysis for visible and NIR applications. Optical Materials. 2018 Dec;86:178–84.
  • 21. Maalej O, Boulard B, Dieudonné B, Ferrari M, Dammak M, Dammak M. Downconversion in Pr3+–Yb3+ co-doped ZBLA fluoride glasses. Journal of Luminescence. 2015 May;161:198–201.
  • 22. Muscelli WC, Aquino FT, Caixeta FJ, Nunes LRR, Zur L, Ferrari M, et al. Yb3+ concentration influences UV–Vis to NIR energy conversion in nanostructured Pr3+ and Yb3+ co-doped SiO2-Nb2O5 materials for photonics. Journal of Luminescence. 2018 Jul;199:454–60.
  • 23. Lakshminarayana G, Qiu J. Near-infrared quantum cutting in RE3+/Yb3+ (RE=Pr, Tb, and Tm): GeO2–B2O3–ZnO–LaF3 glasses via downconversion. Journal of Alloys and Compounds. 2009 Jul;481(1–2):582–9.
  • 24. Rajesh D, Dousti MR, Amjad RJ, de Camargo ASS. Quantum cutting and up-conversion investigations in Pr 3+ /Yb 3+ co-doped oxyfluoro-tellurite glasses. Journal of Non-Crystalline Solids. 2016 Oct;450:149–55.
  • 25. Belançon MP, Marconi JD, Ando MF, Barbosa LC. Near-IR emission in Pr3+single doped and tunable near-IR emission in Pr3+/Yb3+ codoped tellurite tungstate glasses for broadband optical amplifiers. Optical Materials. 2014 Apr;36(6):1020–6.
  • 26. Seshadri M, Bell MJV, Anjos V, Messaddeq Y. Spectroscopic investigations on Yb3+ doped and Pr3+/Yb3+ codoped tellurite glasses for photonic applications. Journal of Rare Earths. 2021 Jan;39(1):33–42.
  • 27. Rao VH, Prasad PS, Babu KS. Visible luminescence characteristics of Pr3+ ions in TeO2–Sb2O3–WO3 glasses. Optical Materials. 2020 Mar;101:109740.
  • 28. Hegde V, Viswanath CSD, Chauhan N, Mahato KK, Kamath SD. Photoluminescence and thermally stimulated luminescence properties of Pr3+-doped zinc sodium bismuth borate glasses. Optical Materials. 2018 Oct;84:268–77.
  • 29. Zhou X, Wang G, Zhou K, Li Q. Near-infrared quantum cutting in Pr3+/Yb3+ co-doped transparent tellurate glass via two step energy transfer. Optical Materials. 2013 Jan;35(3):600–3.
  • 30. Liang L, Mo Z, Ju B, Xia C, Hou Z, Zhou G. Visible and Near-Infrared emission properties of Yb3+/Pr3+ co-doped lanthanum aluminum silicate glass. Journal of Non-Crystalline Solids. 2021 Apr;557:120578.
There are 30 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Murat Erdem 0000-0003-3581-7523

Anıl Doğan 0000-0002-4905-1293

Project Number FEN-C-YLP-141118-0600
Publication Date February 28, 2022
Submission Date September 9, 2021
Acceptance Date November 19, 2021
Published in Issue Year 2022

Cite

Vancouver Erdem M, Doğan A. Spectral outputs of Yb3+/Pr3+ doped Tellurite glasses for solid-state lighting. JOTCSA. 2022;9(1):21-8.