Research Article
BibTex RIS Cite

Optimization and Characterization of Cellulose Nanocrystal Production from Aseptic Tetra Pak Food Packaging Waste

Year 2022, , 131 - 148, 28.02.2022
https://doi.org/10.18596/jotcsa.996450

Abstract

Cellulose fibers were extracted from the recycled Tetra Pak aseptic food package wastes, and high value-added cellulose nanocrystals (CNC) were produced by the acidic hydrolysis. At the optimum H2SO4 concentration of 25% w, the whiteness index of CNC obtained at 30 °C for 30 min CNC was 84.42%, while it was 56.00% for 50 °C for 60 min CNC. The effects of temperature and time on the hydrolysis yield were optimized by the Central Composite Design and the maximum yield was determined at the condition where the temperature was high and the time was the lowest. The physical and structural properties of different CNCs were investigated using several characterization techniques. The FTIR and TGA analyses of the CNCs obtained at different temperatures and times showed similar spectra and degradation temperatures with each other, respectively. The crystallinity index of alkaline-treated cellulose calculated from the XRD patterns was much lower than those of all of the CNCs. According to AFM measurements and SEM micrographs, it was confirmed that as the temperature and time increased, the diameters of the CNCs were reduced. The lowest diameter value was measured as 175 nm at 50 °C for 60 min CNC, whereas, on the other hand, the highest diameter value was measured as 403 nm at 30 °C for 30 min CNC.

Thanks

The authors would like to express their heartiest gratitude and sincere thanks to Prof. Dr. Serap CESUR (Ege University) for her support and guidance.

References

  • 1. Szabó AM, Koltai L, Fodor L. Comparative analysis of aluminium and aluminium free recycled multilayered beverage carton packaging. J Graph Eng Des. 2013;42:13–9.
  • 2. Baskoro Lokahita, Muhammad Aziz, Yoshikawa K, Takahashi F. Energy and resource recovery from Tetra Pak waste using hydrothermal treatment. Applied Energy. 2017 Dec;207:107–13.
  • 3. Diop CIK, Lavoie J-M. Isolation of Nanocrystalline Cellulose: A Technological Route for Valorizing Recycled Tetra Pak Aseptic Multilayered Food Packaging Wastes. Waste Biomass Valor. 2017 Jan;8(1):41–56.
  • 4. Anonymous. Tetra Pak. Sustainability Report 2021 [Internet]. Tetra Pak; 2021. Available from: https://www.tetrapak.com/content/dam/tetrapak/publicweb/gb/en/sustainability/TetraPak_Sustainability_Report_2021
  • 5. Yilgor N, Köse C, Terzi E, Figen AK, Ibach R, Kartal SN, et al. Degradation Behavior and Accelerated Weathering of Composite Boards Produced from Waste Tetra Pak® Packaging Materials. BioResources. 2014 Jun 25;9(3):4784–807.
  • 6. Eyley S, Thielemans W. Surface modification of cellulose nanocrystals. Nanoscale. 2014;6(14):7764–79.
  • 7. Habibi Y, Lucia LA, Rojas OJ. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem Rev. 2010 Jun 9;110(6):3479–500.
  • 8. George J, S N S. Cellulose nanocrystals: synthesis, functional properties, and applications. NSA. 2015 Nov;45.
  • 9. Anwar Z, Gulfraz M, Irshad M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences. 2014 Apr;7(2):163–73.
  • 10. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, et al. Nanocellulose, a tiny fiber with huge applications. Current Opinion in Biotechnology. 2016 Jun;39:76–88.
  • 11. Yang J. Manufacturing of Nanocrystalline Cellulose [Internet] [Master of Science Thesis]. [Finland]: Aalto University School of Chemical Engineering; 2017.
  • 12. Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science. 2012 Nov;37(11):1552–96.
  • 13. Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y, et al. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering. 2015 Jun;75:176–200.
  • 14. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, et al. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers. 2010 May;81(1):83–92.
  • 15. Manzato L, Rabelo LCA, de Souza SM, da Silva CG, Sanches EA, Rabelo D, et al. New approach for extraction of cellulose from tucumã’s endocarp and its structural characterization. Journal of Molecular Structure. 2017 Sep;1143:229–34.
  • 16. Gooch JW, editor. Encyclopedic dictionary of polymers. 2nd ed. New York: Springer; 2011. 1 p. ISBN: 978-1-4419-6246-1.
  • 17. Rodsamran P, Sothornvit R. Renewable cellulose source: isolation and characterisation of cellulose from rice stubble residues. Int J Food Sci Technol. 2015 Sep;50(9):1953–9.
  • 18. Segal L, Creely JJ, Martin AE, Conrad CM. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal. 1959 Oct;29(10):786–94.
  • 19. Şahin GG, Karaboyacı M. Process and machinery design for the recycling of tetra pak components. Journal of Cleaner Production. 2021 Nov;323:129186.
  • 20. Lee HV, Hamid SBA, Zain SK. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. The Scientific World Journal. 2014;2014:1–20.
  • 21. Santos RM dos, Flauzino Neto WP, Silvério HA, Martins DF, Dantas NO, Pasquini D. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products. 2013 Oct;50:707–14.
  • 22. Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose. 2010 Oct;17(5):977–85.
  • 23. Lu P, Hsieh Y-L. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers. 2012 Jan;87(1):564–73.
  • 24. Ciolacu D, Ciolacu F, Popa V. Amorphous cellulose-Structure and characterization. Cellul Chem Technol. 2011;45((1-2)):13–21.
  • 25. Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource Technology. 2008 Apr;99(6):1664–71.
  • 26. Fan M, Dai D, Huang B. Fourier Transform Infrared Spectroscopy for Natural Fibres. In: Salih Mohammed Salih, editor. Fourier Transform-Materials Analysis [Internet]. 2012 [cited 2021 Dec 18]. ISBN: 978-953-51-4293-5.
  • 27. Chieng B, Lee S, Ibrahim N, Then Y, Loo Y. Isolation and Characterization of Cellulose Nanocrystals from Oil Palm Mesocarp Fiber. Polymers. 2017 Aug 11;9(12):355.
  • 28. Mazlita Y, Lee HV, Hamid SBA. Preparation of Cellulose Nanocrystals Bio-Polymer from Agro-Industrial Wastes: Separation and Characterization. Polymers and Polymer Composites. 2016 Nov;24(9):719–28.
  • 29. Kumar A, Singh Negi Y, Choudhary V, Kant Bhardwaj N. Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. JMPC. 2020 Oct 29;2(1):1–8.
  • 30. Feng X, Meng X, Zhao J, Miao M, Shi L, Zhang S, et al. Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization. Cellulose. 2015 Jun;22(3):1763–72.
  • 31. Dai H, Ou S, Huang Y, Huang H. Utilization of pineapple peel for production of nanocellulose and film application. Cellulose. 2018 Mar;25(3):1743–56.
  • 32. Oushabi A, Sair S, Oudrhiri Hassani F, Abboud Y, Tanane O, El Bouari A. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering. 2017 Jun;23:116–23.
  • 33. Rosli NA, Ahmad I, Abdullah I. Isolation and Characterization of Cellulose Nanocrystals from Agave angustifolia Fibre. BioResources. 2013 Feb 21;8(2):1893–908.
  • 34. Nascimento SA, Rezende CA. Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohydrate Polymers. 2018 Jan;180:38–45.
  • 35. Khawas P, Deka SC. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydrate Polymers. 2016 Feb;137:608–16.
  • 36. Lamaming J, Hashim R, Leh CP, Sulaiman O, Sugimoto T, Nasir M. Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). Carbohydrate Polymers. 2015 Dec;134:534–40.
  • 37. Sonia A, Priya Dasan K. Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydrate Polymers. 2013 Jan;92(1):668–74.
  • 38. Rhim J-W, Reddy JP, Luo X. Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose. 2015 Feb;22(1):407–20.
  • 39. Mandal A, Chakrabarty D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers. 2011 Aug;86(3):1291–9.
  • 40. Meng F, Wang G, Du X, Wang Z, Xu S, Zhang Y. Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Composites Part B: Engineering. 2019 Mar;160:341–7.
  • 41. Naduparambath S, T.V. J, V. S, M.P. S, Balan AK, E. P. Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydrate Polymers. 2018 Jan;180:13–20.
  • 42. Liu D, Zhong T, Chang PR, Li K, Wu Q. Starch composites reinforced by bamboo cellulosic crystals. Bioresource Technology. 2010 Apr;101(7):2529–36.
  • 43. C.S. JC, George N, Narayanankutty SK. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Polymers. 2016 May;142:158–66.
  • 44. Prado KS, Spinacé MAS. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. International Journal of Biological Macromolecules. 2019 Feb;122:410–6.
Year 2022, , 131 - 148, 28.02.2022
https://doi.org/10.18596/jotcsa.996450

Abstract

References

  • 1. Szabó AM, Koltai L, Fodor L. Comparative analysis of aluminium and aluminium free recycled multilayered beverage carton packaging. J Graph Eng Des. 2013;42:13–9.
  • 2. Baskoro Lokahita, Muhammad Aziz, Yoshikawa K, Takahashi F. Energy and resource recovery from Tetra Pak waste using hydrothermal treatment. Applied Energy. 2017 Dec;207:107–13.
  • 3. Diop CIK, Lavoie J-M. Isolation of Nanocrystalline Cellulose: A Technological Route for Valorizing Recycled Tetra Pak Aseptic Multilayered Food Packaging Wastes. Waste Biomass Valor. 2017 Jan;8(1):41–56.
  • 4. Anonymous. Tetra Pak. Sustainability Report 2021 [Internet]. Tetra Pak; 2021. Available from: https://www.tetrapak.com/content/dam/tetrapak/publicweb/gb/en/sustainability/TetraPak_Sustainability_Report_2021
  • 5. Yilgor N, Köse C, Terzi E, Figen AK, Ibach R, Kartal SN, et al. Degradation Behavior and Accelerated Weathering of Composite Boards Produced from Waste Tetra Pak® Packaging Materials. BioResources. 2014 Jun 25;9(3):4784–807.
  • 6. Eyley S, Thielemans W. Surface modification of cellulose nanocrystals. Nanoscale. 2014;6(14):7764–79.
  • 7. Habibi Y, Lucia LA, Rojas OJ. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem Rev. 2010 Jun 9;110(6):3479–500.
  • 8. George J, S N S. Cellulose nanocrystals: synthesis, functional properties, and applications. NSA. 2015 Nov;45.
  • 9. Anwar Z, Gulfraz M, Irshad M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences. 2014 Apr;7(2):163–73.
  • 10. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, et al. Nanocellulose, a tiny fiber with huge applications. Current Opinion in Biotechnology. 2016 Jun;39:76–88.
  • 11. Yang J. Manufacturing of Nanocrystalline Cellulose [Internet] [Master of Science Thesis]. [Finland]: Aalto University School of Chemical Engineering; 2017.
  • 12. Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science. 2012 Nov;37(11):1552–96.
  • 13. Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y, et al. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering. 2015 Jun;75:176–200.
  • 14. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, et al. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers. 2010 May;81(1):83–92.
  • 15. Manzato L, Rabelo LCA, de Souza SM, da Silva CG, Sanches EA, Rabelo D, et al. New approach for extraction of cellulose from tucumã’s endocarp and its structural characterization. Journal of Molecular Structure. 2017 Sep;1143:229–34.
  • 16. Gooch JW, editor. Encyclopedic dictionary of polymers. 2nd ed. New York: Springer; 2011. 1 p. ISBN: 978-1-4419-6246-1.
  • 17. Rodsamran P, Sothornvit R. Renewable cellulose source: isolation and characterisation of cellulose from rice stubble residues. Int J Food Sci Technol. 2015 Sep;50(9):1953–9.
  • 18. Segal L, Creely JJ, Martin AE, Conrad CM. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal. 1959 Oct;29(10):786–94.
  • 19. Şahin GG, Karaboyacı M. Process and machinery design for the recycling of tetra pak components. Journal of Cleaner Production. 2021 Nov;323:129186.
  • 20. Lee HV, Hamid SBA, Zain SK. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. The Scientific World Journal. 2014;2014:1–20.
  • 21. Santos RM dos, Flauzino Neto WP, Silvério HA, Martins DF, Dantas NO, Pasquini D. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products. 2013 Oct;50:707–14.
  • 22. Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose. 2010 Oct;17(5):977–85.
  • 23. Lu P, Hsieh Y-L. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers. 2012 Jan;87(1):564–73.
  • 24. Ciolacu D, Ciolacu F, Popa V. Amorphous cellulose-Structure and characterization. Cellul Chem Technol. 2011;45((1-2)):13–21.
  • 25. Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource Technology. 2008 Apr;99(6):1664–71.
  • 26. Fan M, Dai D, Huang B. Fourier Transform Infrared Spectroscopy for Natural Fibres. In: Salih Mohammed Salih, editor. Fourier Transform-Materials Analysis [Internet]. 2012 [cited 2021 Dec 18]. ISBN: 978-953-51-4293-5.
  • 27. Chieng B, Lee S, Ibrahim N, Then Y, Loo Y. Isolation and Characterization of Cellulose Nanocrystals from Oil Palm Mesocarp Fiber. Polymers. 2017 Aug 11;9(12):355.
  • 28. Mazlita Y, Lee HV, Hamid SBA. Preparation of Cellulose Nanocrystals Bio-Polymer from Agro-Industrial Wastes: Separation and Characterization. Polymers and Polymer Composites. 2016 Nov;24(9):719–28.
  • 29. Kumar A, Singh Negi Y, Choudhary V, Kant Bhardwaj N. Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. JMPC. 2020 Oct 29;2(1):1–8.
  • 30. Feng X, Meng X, Zhao J, Miao M, Shi L, Zhang S, et al. Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization. Cellulose. 2015 Jun;22(3):1763–72.
  • 31. Dai H, Ou S, Huang Y, Huang H. Utilization of pineapple peel for production of nanocellulose and film application. Cellulose. 2018 Mar;25(3):1743–56.
  • 32. Oushabi A, Sair S, Oudrhiri Hassani F, Abboud Y, Tanane O, El Bouari A. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering. 2017 Jun;23:116–23.
  • 33. Rosli NA, Ahmad I, Abdullah I. Isolation and Characterization of Cellulose Nanocrystals from Agave angustifolia Fibre. BioResources. 2013 Feb 21;8(2):1893–908.
  • 34. Nascimento SA, Rezende CA. Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohydrate Polymers. 2018 Jan;180:38–45.
  • 35. Khawas P, Deka SC. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydrate Polymers. 2016 Feb;137:608–16.
  • 36. Lamaming J, Hashim R, Leh CP, Sulaiman O, Sugimoto T, Nasir M. Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). Carbohydrate Polymers. 2015 Dec;134:534–40.
  • 37. Sonia A, Priya Dasan K. Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydrate Polymers. 2013 Jan;92(1):668–74.
  • 38. Rhim J-W, Reddy JP, Luo X. Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose. 2015 Feb;22(1):407–20.
  • 39. Mandal A, Chakrabarty D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers. 2011 Aug;86(3):1291–9.
  • 40. Meng F, Wang G, Du X, Wang Z, Xu S, Zhang Y. Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Composites Part B: Engineering. 2019 Mar;160:341–7.
  • 41. Naduparambath S, T.V. J, V. S, M.P. S, Balan AK, E. P. Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydrate Polymers. 2018 Jan;180:13–20.
  • 42. Liu D, Zhong T, Chang PR, Li K, Wu Q. Starch composites reinforced by bamboo cellulosic crystals. Bioresource Technology. 2010 Apr;101(7):2529–36.
  • 43. C.S. JC, George N, Narayanankutty SK. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Polymers. 2016 May;142:158–66.
  • 44. Prado KS, Spinacé MAS. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. International Journal of Biological Macromolecules. 2019 Feb;122:410–6.
There are 44 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

Damla Akgün 0000-0002-0787-6297

Duygu Ova Özcan 0000-0002-6462-1725

Bikem Övez 0000-0003-3094-1859

Publication Date February 28, 2022
Submission Date September 16, 2021
Acceptance Date December 17, 2021
Published in Issue Year 2022

Cite

Vancouver Akgün D, Ova Özcan D, Övez B. Optimization and Characterization of Cellulose Nanocrystal Production from Aseptic Tetra Pak Food Packaging Waste. JOTCSA. 2022;9(1):131-48.