Research Article
BibTex RIS Cite

Rapid processes for the production of nanocrystal yttria-stabilized tetragonal zirconia polycrystalline ceramics: ultrasonic spray pyrolysis synthesis and high-frequency induction sintering

Year 2023, , 83 - 91, 31.12.2023
https://doi.org/10.59313/jsr-a.1284493

Abstract

In this study, nanocrystalline 3 mol % yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic was produced by sintering with a high-frequency induction heating (HFIH) system of granular powders obtained by ultrasonic spray pyrolysis (USP) at 600 °C. The granular nano-sized powders (10-30 nm) were micron in size (average size: 700 nm), spherical in shape and amorphous. The influences of the HFIH sintering temperature (1400-1600 °C), applied current time (60-300 sec.) and the mechanical pressure (10 MPa and 20 MPa) on the final density and grain size of the products were investigated. The amorphous granular Y-TZP powders compressed with the HFIH system allow very rapid condensation in the tetragonal phase at high density and avoid grain growth. High density (relative density over 95) nanocrystalline Y-TZP ceramic with ∼70 nm size could be obtained from the simultaneous application of 20 MPa pressure and an induced current within 300 sec. of sintering time at 1500 °C. In this condition, the sample’s maximum hardness and fracture toughness values were reached at 14.9 GPa and 3.8 MPa·m1/2, respectively. Y-TZP powders produced in nano-micro structure with the USP system were sintered with the HFIH system and rapid production was achieved by preventing grain growth.

References

  • [1] J. Li, J. Peng, S. Guo, L. Zhang, Application of response surface methodology (RSM) for optimization of the sintering process of preparation calcia partially stabilized zirconia (CaO-PSZ) using natural baddeleyite, J. Alloys Compd. 574 (2013) 504–511.
  • [2] G. Rauchs, T. Fett, D. Munz, R. Oberacker, Tetragonal-to-monoclinic phase transformation in CeO2 -stabilized zirconia under multiaxial loading, J. Eur. Ceram. Soc. 22 (2002) 841–849.
  • [3] Y. Zhao, Y. Gao, Structural evolution of plasma-sprayed nanoscale 3 mol% and 5 mol% yttria-stabilized zirconia coatings during sintering, Appl. Surf. Sci. 425 (2017) 1033–1039.
  • [4] L. Hao, D.R. Ma, J. Lawrence, X. Zhu, Enhancing osteoblast functions on a magnesia partially stabilised zirconia bioceramic by means of laser irradiation, Mater. Sci. Eng. C. 25 (2005) 496–502.
  • [5] M. Trunec, Z. Chlup, Higher fracture toughness of tetragonal zirconia ceramics through nanocrystalline structure, Scr. Mater. 61 (2009) 56–59.
  • [6] F. Wakai, S. Sakaguchi, Y. Matsuno, Superplasticity of Yttria-Stabilized Tetragonal Zr02 Polycrystals, Advanced Ceramic Materials 1 (1986) 259-263.
  • [7] A. Bravo-Leon, Y. Morikawa, M. Kawahara, M.J. Mayo, Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content, Acta Mater. 50 (2002) 4555–4562.
  • [8] T. Okamoto, K. Yasuda, T. Shiota, Grain motion statistics of polycrystalline zirconia during superplastic deformation, Scr. Mater. 64 (2011) 253–255.
  • [9] Y. Ye, J. Li, H. Zhou, J. Chen, Microstructure and mechanical properties of yttria-stabilized ZrO2/Al2O3 nanocomposite ceramics, Ceram. Int. 34 (2008) 1797–1803.
  • [10] A.S. Gandhi, V. Jayaram, A.H. Chokshi, Dense Amorphous Zirconia – Alumina by Low-Temperature Consolidation of Spray-Pyrolyzed Powders, J. Am. Ceram. Soc. 82 (1999) 2613–2618.
  • [11] L. Gan, Y. Park, H. Kim, J. Kim, J. Ko, J. Lee, Journal of the European Ceramic Society Fabrication and microstructure of hot pressed laminated Y2O3/Nd :Y2O3/Y2O3 transparent ceramics, Journal of the European Ceramic Society Volume 36, (2016) 911–916.
  • [12] R. Poyato, J. MacÍas-Delgado, A. García-Valenzuela, R.L. González-Romero, A. Muñoz, A. Domínguez-Rodríguez, Electrical properties of reduced 3YTZP ceramics consolidated by spark plasma sintering, Ceram. Int. 42 (2016) 6713–6719.
  • [13] C. Ergun, Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing, Ceram. Int. 37 (2011) 935–942.
  • [14] A. Gionea, E. Andronescu, G. Voicu, C. Bleotu, V.A. Surdu, Influence of hot isostatic pressing on ZrO2–CaO dental ceramics properties, Int. J. Pharm. 510 (2016) 439–448.
  • [15] K.A. Khalıl, S.W. Kim, Mechanical wet-milling and subsequent consolidation of ultra-fine Al2O3-(ZrO2+3%Y2O3) bioceramics by using high-frequency induction heat sintering, Trans. Nonferrous Met. Soc. China. 17 (2007) 21–26.
  • [16] S.W. Kim, S.L. Cockcroft, K.A. Khalil, K. Ogi, Sintering behavior of ultra-fine Al2O3-(ZrO2+Xmol% Y2O3) ceramics by high-frequency induction heating, Mater. Sci. Eng. A. 527 (2010) 4926–4931.
  • [17] S.W. Kim, K.A. Khalil, S.L. Cockcroft, D. Hui, J.H. Lee, Sintering behavior and mechanical properties of HA-X% mol 3YSZ composites sintered by high frequency induction heated sintering, Compos. Part B Eng. 45 (2013) 1689–1693.
  • [18] I.J. Shon, I.K. Jeong, J.H. Park, B.R. Kim, K.T. Lee, Effect of Fe2O3 addition on consolidation and properties of 8 mol% yttria-stabilized zirconia by high-frequency induction heated sintering (HFIHS), Ceram. Int. 35 (2009) 363–368.
  • [19] M. Gaudon, E. Djurado, N.H. Menzler, Morphology and sintering behaviour of yttria stabilised zirconia (8-YSZ) powders synthesised by spray pyrolysis, Ceram. Int. 30 (2004) 2295–2303.
  • [20]M. Chen, J. He, Y. Zhang, Z. Ding, J. Luo, Densification and grain growth behaviour of high-purity MgO ceramics by hot-pressing, Ceram. Int. 43 (2017) 1775–1780.
  • [21] Z. He, J. Ma, Grain-growth rate constant of hot-pressed alumina ceramics, Mater. Lett. 44 (2000) 14–18.
  • [22] A.S. Gandhi, V. Jayaram, A.H. Chokshi, Low temperature densification behaviour of metastable phases in ZrO2–Al2O3 powders produced by spray pyrolysis, Mater. Sci. 306 (2001) 785–789.
  • [23]K. Matsui, H. Yoshida, Y. Ikuhara, Phase-transformation and grain-growth kinetics in yttria-stabilized tetragonal zirconia polycrystal doped with a small amount of alumina, J. Eur. Ceram. Soc. 30 (2010) 1679–1690.
  • [24]S. Tekeli, Influence of alumina addition on grain growth and room temperature mechanical properties of 8YSCZ/Al2O3 composites, Compos. Sci. Technol. 65 (2005) 967–972.
  • [25]Y.W. Hsu, K.H. Yang, K.M. Chang, S.W. Yeh, M.C. Wang, Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process, J. Alloys Compd. 509 (2011) 6864–6870.
  • [26]R. Dwivedi, A. Maurya, A. Verma, R. Prasad, K.S. Bartwal, Microwave assisted sol-gel synthesis of tetragonal zirconia nanoparticles, J. Alloys Compd. 509 (2011) 6848–6851.
  • [27] Y.N. Ko, S.M. Lee, J.H. Kim, J. Lee, Y.C. Kang, Processing Research Sintering characteristics of nano-sized yttria-stabilized zirconia powders prepared by spray pyrolysis, J. Ceram. Process. Res. 13 (2012) 405–408.
  • [28]M. Koç, Synthesis and Characterization of Nanostructured Y-TZP-Al2O3 Granule Composite Microspheres, PhD thesis, Kütahya Dumlupınar University Institute of Science, Kütahya, (2018) 152s.
  • [29]M. Perez-Page, R. Guzalowski, D.N.F. Muche, R.H.R. Castro, P. Stroeve, Synthesis of porous yttria-stabilized zirconia microspheres by ultrasonic spray pyrolysis, Mater. Lett. 188 (2017) 41–44.
  • [30] A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, M. Nganbe, Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor, J. Mater. Sci. Technol. 31 (2015) 773–783.
  • [31] J. Lubauer, F. H., Schuenemann, R., Belli, U., Lohbauer, Speed‑sintering and the mechanical properties of 3–5 mol% Y2O3‑stabilized zirconias, Odontology (2023) 1-8.
Year 2023, , 83 - 91, 31.12.2023
https://doi.org/10.59313/jsr-a.1284493

Abstract

References

  • [1] J. Li, J. Peng, S. Guo, L. Zhang, Application of response surface methodology (RSM) for optimization of the sintering process of preparation calcia partially stabilized zirconia (CaO-PSZ) using natural baddeleyite, J. Alloys Compd. 574 (2013) 504–511.
  • [2] G. Rauchs, T. Fett, D. Munz, R. Oberacker, Tetragonal-to-monoclinic phase transformation in CeO2 -stabilized zirconia under multiaxial loading, J. Eur. Ceram. Soc. 22 (2002) 841–849.
  • [3] Y. Zhao, Y. Gao, Structural evolution of plasma-sprayed nanoscale 3 mol% and 5 mol% yttria-stabilized zirconia coatings during sintering, Appl. Surf. Sci. 425 (2017) 1033–1039.
  • [4] L. Hao, D.R. Ma, J. Lawrence, X. Zhu, Enhancing osteoblast functions on a magnesia partially stabilised zirconia bioceramic by means of laser irradiation, Mater. Sci. Eng. C. 25 (2005) 496–502.
  • [5] M. Trunec, Z. Chlup, Higher fracture toughness of tetragonal zirconia ceramics through nanocrystalline structure, Scr. Mater. 61 (2009) 56–59.
  • [6] F. Wakai, S. Sakaguchi, Y. Matsuno, Superplasticity of Yttria-Stabilized Tetragonal Zr02 Polycrystals, Advanced Ceramic Materials 1 (1986) 259-263.
  • [7] A. Bravo-Leon, Y. Morikawa, M. Kawahara, M.J. Mayo, Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content, Acta Mater. 50 (2002) 4555–4562.
  • [8] T. Okamoto, K. Yasuda, T. Shiota, Grain motion statistics of polycrystalline zirconia during superplastic deformation, Scr. Mater. 64 (2011) 253–255.
  • [9] Y. Ye, J. Li, H. Zhou, J. Chen, Microstructure and mechanical properties of yttria-stabilized ZrO2/Al2O3 nanocomposite ceramics, Ceram. Int. 34 (2008) 1797–1803.
  • [10] A.S. Gandhi, V. Jayaram, A.H. Chokshi, Dense Amorphous Zirconia – Alumina by Low-Temperature Consolidation of Spray-Pyrolyzed Powders, J. Am. Ceram. Soc. 82 (1999) 2613–2618.
  • [11] L. Gan, Y. Park, H. Kim, J. Kim, J. Ko, J. Lee, Journal of the European Ceramic Society Fabrication and microstructure of hot pressed laminated Y2O3/Nd :Y2O3/Y2O3 transparent ceramics, Journal of the European Ceramic Society Volume 36, (2016) 911–916.
  • [12] R. Poyato, J. MacÍas-Delgado, A. García-Valenzuela, R.L. González-Romero, A. Muñoz, A. Domínguez-Rodríguez, Electrical properties of reduced 3YTZP ceramics consolidated by spark plasma sintering, Ceram. Int. 42 (2016) 6713–6719.
  • [13] C. Ergun, Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing, Ceram. Int. 37 (2011) 935–942.
  • [14] A. Gionea, E. Andronescu, G. Voicu, C. Bleotu, V.A. Surdu, Influence of hot isostatic pressing on ZrO2–CaO dental ceramics properties, Int. J. Pharm. 510 (2016) 439–448.
  • [15] K.A. Khalıl, S.W. Kim, Mechanical wet-milling and subsequent consolidation of ultra-fine Al2O3-(ZrO2+3%Y2O3) bioceramics by using high-frequency induction heat sintering, Trans. Nonferrous Met. Soc. China. 17 (2007) 21–26.
  • [16] S.W. Kim, S.L. Cockcroft, K.A. Khalil, K. Ogi, Sintering behavior of ultra-fine Al2O3-(ZrO2+Xmol% Y2O3) ceramics by high-frequency induction heating, Mater. Sci. Eng. A. 527 (2010) 4926–4931.
  • [17] S.W. Kim, K.A. Khalil, S.L. Cockcroft, D. Hui, J.H. Lee, Sintering behavior and mechanical properties of HA-X% mol 3YSZ composites sintered by high frequency induction heated sintering, Compos. Part B Eng. 45 (2013) 1689–1693.
  • [18] I.J. Shon, I.K. Jeong, J.H. Park, B.R. Kim, K.T. Lee, Effect of Fe2O3 addition on consolidation and properties of 8 mol% yttria-stabilized zirconia by high-frequency induction heated sintering (HFIHS), Ceram. Int. 35 (2009) 363–368.
  • [19] M. Gaudon, E. Djurado, N.H. Menzler, Morphology and sintering behaviour of yttria stabilised zirconia (8-YSZ) powders synthesised by spray pyrolysis, Ceram. Int. 30 (2004) 2295–2303.
  • [20]M. Chen, J. He, Y. Zhang, Z. Ding, J. Luo, Densification and grain growth behaviour of high-purity MgO ceramics by hot-pressing, Ceram. Int. 43 (2017) 1775–1780.
  • [21] Z. He, J. Ma, Grain-growth rate constant of hot-pressed alumina ceramics, Mater. Lett. 44 (2000) 14–18.
  • [22] A.S. Gandhi, V. Jayaram, A.H. Chokshi, Low temperature densification behaviour of metastable phases in ZrO2–Al2O3 powders produced by spray pyrolysis, Mater. Sci. 306 (2001) 785–789.
  • [23]K. Matsui, H. Yoshida, Y. Ikuhara, Phase-transformation and grain-growth kinetics in yttria-stabilized tetragonal zirconia polycrystal doped with a small amount of alumina, J. Eur. Ceram. Soc. 30 (2010) 1679–1690.
  • [24]S. Tekeli, Influence of alumina addition on grain growth and room temperature mechanical properties of 8YSCZ/Al2O3 composites, Compos. Sci. Technol. 65 (2005) 967–972.
  • [25]Y.W. Hsu, K.H. Yang, K.M. Chang, S.W. Yeh, M.C. Wang, Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process, J. Alloys Compd. 509 (2011) 6864–6870.
  • [26]R. Dwivedi, A. Maurya, A. Verma, R. Prasad, K.S. Bartwal, Microwave assisted sol-gel synthesis of tetragonal zirconia nanoparticles, J. Alloys Compd. 509 (2011) 6848–6851.
  • [27] Y.N. Ko, S.M. Lee, J.H. Kim, J. Lee, Y.C. Kang, Processing Research Sintering characteristics of nano-sized yttria-stabilized zirconia powders prepared by spray pyrolysis, J. Ceram. Process. Res. 13 (2012) 405–408.
  • [28]M. Koç, Synthesis and Characterization of Nanostructured Y-TZP-Al2O3 Granule Composite Microspheres, PhD thesis, Kütahya Dumlupınar University Institute of Science, Kütahya, (2018) 152s.
  • [29]M. Perez-Page, R. Guzalowski, D.N.F. Muche, R.H.R. Castro, P. Stroeve, Synthesis of porous yttria-stabilized zirconia microspheres by ultrasonic spray pyrolysis, Mater. Lett. 188 (2017) 41–44.
  • [30] A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, M. Nganbe, Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor, J. Mater. Sci. Technol. 31 (2015) 773–783.
  • [31] J. Lubauer, F. H., Schuenemann, R., Belli, U., Lohbauer, Speed‑sintering and the mechanical properties of 3–5 mol% Y2O3‑stabilized zirconias, Odontology (2023) 1-8.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Muhterem Koç 0000-0003-3661-4410

Osman Şan 0000-0001-6033-5804

Publication Date December 31, 2023
Submission Date April 17, 2023
Published in Issue Year 2023

Cite

IEEE M. Koç and O. Şan, “Rapid processes for the production of nanocrystal yttria-stabilized tetragonal zirconia polycrystalline ceramics: ultrasonic spray pyrolysis synthesis and high-frequency induction sintering”, JSR-A, no. 055, pp. 83–91, December 2023, doi: 10.59313/jsr-a.1284493.