Research Article
BibTex RIS Cite
Year 2020, Volume: 15 Issue: 1, 1 - 8, 18.01.2020

Abstract


References

  • [1] Choi, K., Yoo, S.J., Sung, Y.E., and Zentel, R., (2006). High Contrast Ratio and Rapid Switching Organic Polymeric Electrochromic Thin Films Based on Triarylamine Derivatives from Layer-by-Layer Assembly Chem. Mater. 18:5823–5825.
  • [2] Sonmez, G. and Wudl, F., (2005). Completion of The Three Primary Colours: The Final Step toward Plastic Displays J. Mater. Chem. 2:20-22.
  • [3] Durmus, A., Gunbas, G.E., Camurlu, P., and Toppare, L., (2007). A neutral State Green Polymer with a Superior Transmissive Light Blue Oxidized State Chem. Commun. 31:3246-8.
  • [4] Rowley, N.M. and Mortimer, R.J., (2002). New Electrochromic Materials Sci. Prog. 179:161-168.
  • [5] Varis, S., Ak, M., Tanyeli, C., Akhmedov, I.M., and Toppare, L., (2006). Synthesis and Characterization of a New Soluble Conducting Polymer and Its Electrochromic Device Solid State Sci. 8:1477–83.
  • [6] Nicho, M., (2004). Synthesis of Derivatives of Polythiophene and Their Application in an Electrochromic Device Sol. Energy Mater. Sol. Cells 82:105–18.
  • [7] Mortimer, R.J., Dyer, A.L., and Reynolds, J.R., (2006). Electrochromic Organic and Polymeric Materials for Display Applications Displays. 27:2-18.
  • [8] Yang, Z., Peng, H., Wang, W., and Liu, T., (2010). Crystallization behavior of Poly(ε-caprolactone)/layered Double Hydroxide Nanocomposites J. Appl. Polym. Sci. 116: 2658–2667.
  • [9] Yaǧmur, I., Ak, M., and Bayrakçeken, A., (2013). Fabricating Multicolored Electrochromic Devices Using Conducting Copolymers Smart Mater. Struct.
  • [10] Haskal, E.I., Büchel, M., Duineveld, P.C., Sempel, A., and Van de Weijer, P., (2002). Passive-matrix Polymer Light-emitting Displays MRS Bull. 27:864-869.
  • [11] Granqvist, C.G., (2014). Electrochromics for Smart Windows: Oxide-based Thin Films and Devices Thin Solid Films 564:1–38.
  • [12] Baycan Koyuncu, F., Koyuncu, S., and Ozdemir, E., (2011). A new Multi-electrochromic 2,7 Linked Polycarbazole Derivative: Effect of the Nitro Subunit Org. Electron. Physics, Mater. Appl. 160:20-22.
  • [13] Blouin, N. and Leclerc, M., (2008). Poly(2,7-carbazole)s: Structure−Property Relationships Acc. Chem. Res. 41:1110–1119.
  • [14] Michinobu, T., Osako, H., and Shigehara, K., (2009). Synthesis and Properties of Conjugated Poly(1,8-carbazole)s Macromolecules 42:8172–8180.
  • [15] Ayranci, R., Torlak, Y., Soganci, T., and Ak, M., (2018). Trilacunary Keggin Type Polyoxometalate-Conducting Polymer Composites for Amperometric Glucose Detection J. Electrochem. Soc. 165:B638–B6343.
  • [16] Song, F., Ding, Y., Ma, B., Wang, C., Wang, Q., Du, X., Fu, S., and Song, J., (2013). K7[CoIIICoII(H2O)W11O39]: A Molecular Mixed-valence Keggin Polyoxometalate Catalyst of High Stability and Efficiency for Visible Light-Driven Water Oxidation Energy Environ. Sci. 6:1170.
  • [17] Patel, A., Narkhede, N., Singh, S., and Pathan, S., (2016). Keggin-type Lacunary and Transition Metal Substituted Polyoxometalates as Heterogeneous Catalysts: A Recent Progress Catal. Rev. 58:337–70.
  • [18] Hussain, F., Hojjati, M., Okamoto, M., and Gorga, R.E., (2006). Review Article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview J. Compos. Mater. 40:1511–1575.
  • [19] Soganci, T., Torlak, Y., Ak, M., and Ersoz, M., (2018). Poly (dithienylpyrrole)/Keggin Type (nBu4N)3[PW9O34(tBuSiOH)3] Hybrid Material: Enhanced Optical and Electrical Properties of Conjugated Polymers Via Polyoxometalates Synth. Met. 244:54–60.
  • [20] Kleijn, S.E.F., Lai, S.C.S., Koper, M.T.M., and Unwin, P.R., (2014). Electrochemistry of Nanoparticles Angew. Chemie Int. Ed. 53:3558–3586.
  • [21] Dolbecq, A., Dumas, E., Mayer, C.R., and Mialane, P., (2010). Hybrid Organic-inorganic Polyoxometalate Compounds: From Structural Diversity to Applications Chem. Rev. 110:6009-6048.
  • [22] Chen, J.J.J. and Barteau, M.A., (2016). Electrochemical Properties of Keggin-Structure Polyoxometalates in Acetonitrile: Effects of Countercation, Heteroatom, and Framework Metal Exchange Ind. Eng. Chem. Res. 55:9857–64.
  • [23] Guzel, M., Torlak, Y., Karatas, E., and Ak, M., (2019). Optical and Electrical Properties of Monolacunary Keggin-Type Polyoxometalate/Star-Shaped Polycarbazole Nanocomposite Film J. Electrochem. Soc. 166:H313–H319.
  • [24] Crutchley, R.J., (2005). Charge-transfer Isomers and Mixed-Valence Properties Angew. Chemie-Int. Ed. 44:6452-6454.
  • [25] Fernandes, D.M., Brett, C.M.A., and Cavaleiro, A.M.V., (2011). Modified Electrodes with Keggin-Type Silicotungstates and poly(brillant crsyl blue),J. Solid.St.Electrochem. 16:2267-2273.
  • [26] Zhang, L., Zhang, Z., Tan, L., Pang, H., And Ma, H., (2011). Facile Fabrication Of Reduced Graphene Oxide and Keggin-type Polyoxometalates Nanocomposite Film for High Performance Electrocatalytic Oxidation of Nitrite, J. Electroanal. Chem. 660:50–6.
  • [27] Herrmann, S., Ritchie, C., and Streb, C., (2015). Polyoxometalate–conductive Polymer Composites for Energy Conversion, Energy Storage and Nanostructured Sensors Dalt. Trans. 44:7092–104.
  • [28] Song, Y.F. and Tsunashima, R., (2012). Recent Advances on Polyoxometalate-Based Molecular and Composite Materials Chem. Soc. Rev. 41: 7384.
  • [29] Genovese, M. and Lian, K., (2015). Polyoxometalate Modified Inorganic-organic Nanocomposite Materials for Energy Storage Applications: A review Curr. Opin. Solid State Mater. Sci. 19:126-137.
  • [30] Guzel, M., Soganci, T., Akgun, M., and Ak, M., (2015). Carbazole Functionalized Star Shaped Triazine Monomer and Its Electrochromic Applications J. Electrochem. Soc. 162:H527–34.
  • [31] Tountas, M., Topal, Y., Kus, M., Ersöz, M., Fakis, M., Argitis, P., and Vasilopoulou, M., (2016). Water-Soluble Lacunary Polyoxometalates with Excellent Electron Mobilities and Hole Blocking Capabilities for High Efficiency Fluorescent and Phosphorescent Organic Light Emitting Diodes Adv. Funct. Mater. 26:2655–2665.
  • [32] Liu, S., Xu, L., Li, F., Xu, B., and Sun, Z., (2011). Enhanced Electrochromic Performance of Composite Films by Combination of Polyoxometalate with poly(3,4-ethylenedioxythiophene) J. Mater. Chem. 21:1946-1952.
  • [33] Adamczyk, L., (2017). Development of Copper-stabilized Conducting-polymer/polyoxometalate Hybrid Materials for Effective Electrochemical Charging J. Solid State Electrochem. 21:211-222.

Improving The Optoelectronic Properties of Conducting Polymer Via Polyoxometalate

Year 2020, Volume: 15 Issue: 1, 1 - 8, 18.01.2020

Abstract

A composite film formed by combining the
polyoxometalate and the conducting polymer can contribute greatly to the
improvement of the optoelectronic properties of the conducting polymers thanks
to the strong electrostatic interaction between them. In the present work, CT,
namely 2,4,6-tris((9H-carbazol-2-yl)oxy)-s-triazine has been synthesized from
one step reaction of s-triazine and 2-hydroxycarbazole. The
electropolymerization of POM/CT was carried out onto ITO-glass surface in 0.1 M
tetrabutylammonium hexafluorophosphate (TBAPF6)/acetonitrile (ACN)
solution. The composite film displays enhanced electrochromic performance by
incorporation of POM into the PCT film. The electrochromic and electrochemical
property of the composite film is significantly improved, which results in an
optical contrast of 59% at 670 nm and stability maintain 91% of its initial
electroactivity at the end of the 300 cycles.
These results indicate the important
role of POMs in improving optoelectronic properties of PCT to expand application of
electrochromic devices. 

References

  • [1] Choi, K., Yoo, S.J., Sung, Y.E., and Zentel, R., (2006). High Contrast Ratio and Rapid Switching Organic Polymeric Electrochromic Thin Films Based on Triarylamine Derivatives from Layer-by-Layer Assembly Chem. Mater. 18:5823–5825.
  • [2] Sonmez, G. and Wudl, F., (2005). Completion of The Three Primary Colours: The Final Step toward Plastic Displays J. Mater. Chem. 2:20-22.
  • [3] Durmus, A., Gunbas, G.E., Camurlu, P., and Toppare, L., (2007). A neutral State Green Polymer with a Superior Transmissive Light Blue Oxidized State Chem. Commun. 31:3246-8.
  • [4] Rowley, N.M. and Mortimer, R.J., (2002). New Electrochromic Materials Sci. Prog. 179:161-168.
  • [5] Varis, S., Ak, M., Tanyeli, C., Akhmedov, I.M., and Toppare, L., (2006). Synthesis and Characterization of a New Soluble Conducting Polymer and Its Electrochromic Device Solid State Sci. 8:1477–83.
  • [6] Nicho, M., (2004). Synthesis of Derivatives of Polythiophene and Their Application in an Electrochromic Device Sol. Energy Mater. Sol. Cells 82:105–18.
  • [7] Mortimer, R.J., Dyer, A.L., and Reynolds, J.R., (2006). Electrochromic Organic and Polymeric Materials for Display Applications Displays. 27:2-18.
  • [8] Yang, Z., Peng, H., Wang, W., and Liu, T., (2010). Crystallization behavior of Poly(ε-caprolactone)/layered Double Hydroxide Nanocomposites J. Appl. Polym. Sci. 116: 2658–2667.
  • [9] Yaǧmur, I., Ak, M., and Bayrakçeken, A., (2013). Fabricating Multicolored Electrochromic Devices Using Conducting Copolymers Smart Mater. Struct.
  • [10] Haskal, E.I., Büchel, M., Duineveld, P.C., Sempel, A., and Van de Weijer, P., (2002). Passive-matrix Polymer Light-emitting Displays MRS Bull. 27:864-869.
  • [11] Granqvist, C.G., (2014). Electrochromics for Smart Windows: Oxide-based Thin Films and Devices Thin Solid Films 564:1–38.
  • [12] Baycan Koyuncu, F., Koyuncu, S., and Ozdemir, E., (2011). A new Multi-electrochromic 2,7 Linked Polycarbazole Derivative: Effect of the Nitro Subunit Org. Electron. Physics, Mater. Appl. 160:20-22.
  • [13] Blouin, N. and Leclerc, M., (2008). Poly(2,7-carbazole)s: Structure−Property Relationships Acc. Chem. Res. 41:1110–1119.
  • [14] Michinobu, T., Osako, H., and Shigehara, K., (2009). Synthesis and Properties of Conjugated Poly(1,8-carbazole)s Macromolecules 42:8172–8180.
  • [15] Ayranci, R., Torlak, Y., Soganci, T., and Ak, M., (2018). Trilacunary Keggin Type Polyoxometalate-Conducting Polymer Composites for Amperometric Glucose Detection J. Electrochem. Soc. 165:B638–B6343.
  • [16] Song, F., Ding, Y., Ma, B., Wang, C., Wang, Q., Du, X., Fu, S., and Song, J., (2013). K7[CoIIICoII(H2O)W11O39]: A Molecular Mixed-valence Keggin Polyoxometalate Catalyst of High Stability and Efficiency for Visible Light-Driven Water Oxidation Energy Environ. Sci. 6:1170.
  • [17] Patel, A., Narkhede, N., Singh, S., and Pathan, S., (2016). Keggin-type Lacunary and Transition Metal Substituted Polyoxometalates as Heterogeneous Catalysts: A Recent Progress Catal. Rev. 58:337–70.
  • [18] Hussain, F., Hojjati, M., Okamoto, M., and Gorga, R.E., (2006). Review Article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview J. Compos. Mater. 40:1511–1575.
  • [19] Soganci, T., Torlak, Y., Ak, M., and Ersoz, M., (2018). Poly (dithienylpyrrole)/Keggin Type (nBu4N)3[PW9O34(tBuSiOH)3] Hybrid Material: Enhanced Optical and Electrical Properties of Conjugated Polymers Via Polyoxometalates Synth. Met. 244:54–60.
  • [20] Kleijn, S.E.F., Lai, S.C.S., Koper, M.T.M., and Unwin, P.R., (2014). Electrochemistry of Nanoparticles Angew. Chemie Int. Ed. 53:3558–3586.
  • [21] Dolbecq, A., Dumas, E., Mayer, C.R., and Mialane, P., (2010). Hybrid Organic-inorganic Polyoxometalate Compounds: From Structural Diversity to Applications Chem. Rev. 110:6009-6048.
  • [22] Chen, J.J.J. and Barteau, M.A., (2016). Electrochemical Properties of Keggin-Structure Polyoxometalates in Acetonitrile: Effects of Countercation, Heteroatom, and Framework Metal Exchange Ind. Eng. Chem. Res. 55:9857–64.
  • [23] Guzel, M., Torlak, Y., Karatas, E., and Ak, M., (2019). Optical and Electrical Properties of Monolacunary Keggin-Type Polyoxometalate/Star-Shaped Polycarbazole Nanocomposite Film J. Electrochem. Soc. 166:H313–H319.
  • [24] Crutchley, R.J., (2005). Charge-transfer Isomers and Mixed-Valence Properties Angew. Chemie-Int. Ed. 44:6452-6454.
  • [25] Fernandes, D.M., Brett, C.M.A., and Cavaleiro, A.M.V., (2011). Modified Electrodes with Keggin-Type Silicotungstates and poly(brillant crsyl blue),J. Solid.St.Electrochem. 16:2267-2273.
  • [26] Zhang, L., Zhang, Z., Tan, L., Pang, H., And Ma, H., (2011). Facile Fabrication Of Reduced Graphene Oxide and Keggin-type Polyoxometalates Nanocomposite Film for High Performance Electrocatalytic Oxidation of Nitrite, J. Electroanal. Chem. 660:50–6.
  • [27] Herrmann, S., Ritchie, C., and Streb, C., (2015). Polyoxometalate–conductive Polymer Composites for Energy Conversion, Energy Storage and Nanostructured Sensors Dalt. Trans. 44:7092–104.
  • [28] Song, Y.F. and Tsunashima, R., (2012). Recent Advances on Polyoxometalate-Based Molecular and Composite Materials Chem. Soc. Rev. 41: 7384.
  • [29] Genovese, M. and Lian, K., (2015). Polyoxometalate Modified Inorganic-organic Nanocomposite Materials for Energy Storage Applications: A review Curr. Opin. Solid State Mater. Sci. 19:126-137.
  • [30] Guzel, M., Soganci, T., Akgun, M., and Ak, M., (2015). Carbazole Functionalized Star Shaped Triazine Monomer and Its Electrochromic Applications J. Electrochem. Soc. 162:H527–34.
  • [31] Tountas, M., Topal, Y., Kus, M., Ersöz, M., Fakis, M., Argitis, P., and Vasilopoulou, M., (2016). Water-Soluble Lacunary Polyoxometalates with Excellent Electron Mobilities and Hole Blocking Capabilities for High Efficiency Fluorescent and Phosphorescent Organic Light Emitting Diodes Adv. Funct. Mater. 26:2655–2665.
  • [32] Liu, S., Xu, L., Li, F., Xu, B., and Sun, Z., (2011). Enhanced Electrochromic Performance of Composite Films by Combination of Polyoxometalate with poly(3,4-ethylenedioxythiophene) J. Mater. Chem. 21:1946-1952.
  • [33] Adamczyk, L., (2017). Development of Copper-stabilized Conducting-polymer/polyoxometalate Hybrid Materials for Effective Electrochemical Charging J. Solid State Electrochem. 21:211-222.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Yasemin Torlak 0000-0001-5964-2532

Merve Guzel 0000-0002-0603-3933

Metin Ak 0000-0002-0000-4613

Publication Date January 18, 2020
Published in Issue Year 2020 Volume: 15 Issue: 1

Cite

APA Torlak, Y., Guzel, M., & Ak, M. (2020). Improving The Optoelectronic Properties of Conducting Polymer Via Polyoxometalate. Physical Sciences, 15(1), 1-8.
AMA Torlak Y, Guzel M, Ak M. Improving The Optoelectronic Properties of Conducting Polymer Via Polyoxometalate. Physical Sciences. January 2020;15(1):1-8.
Chicago Torlak, Yasemin, Merve Guzel, and Metin Ak. “Improving The Optoelectronic Properties of Conducting Polymer Via Polyoxometalate”. Physical Sciences 15, no. 1 (January 2020): 1-8.
EndNote Torlak Y, Guzel M, Ak M (January 1, 2020) Improving The Optoelectronic Properties of Conducting Polymer Via Polyoxometalate. Physical Sciences 15 1 1–8.
IEEE Y. Torlak, M. Guzel, and M. Ak, “Improving The Optoelectronic Properties of Conducting Polymer Via Polyoxometalate”, Physical Sciences, vol. 15, no. 1, pp. 1–8, 2020.
ISNAD Torlak, Yasemin et al. “Improving The Optoelectronic Properties of Conducting Polymer Via Polyoxometalate”. Physical Sciences 15/1 (January 2020), 1-8.
JAMA Torlak Y, Guzel M, Ak M. Improving The Optoelectronic Properties of Conducting Polymer Via Polyoxometalate. Physical Sciences. 2020;15:1–8.
MLA Torlak, Yasemin et al. “Improving The Optoelectronic Properties of Conducting Polymer Via Polyoxometalate”. Physical Sciences, vol. 15, no. 1, 2020, pp. 1-8.
Vancouver Torlak Y, Guzel M, Ak M. Improving The Optoelectronic Properties of Conducting Polymer Via Polyoxometalate. Physical Sciences. 2020;15(1):1-8.