Research Article
BibTex RIS Cite

Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu

Year 2018, , 748 - 754, 01.04.2018
https://doi.org/10.16984/saufenbilder.343027

Abstract

Bu çalışmada,  sol-jel
yöntemi ile tetraetil ortosilikat (TEOS) ön başlatıcısı varlığında zirkonyum
fosfat  (ZrP) ve Poli (etilen oksit)
temelli ZrP/ PEO kompozit malzemesi üretilmiştir. Hazırlanan malzemenin yapısı
X-ışını difraksiyonu (XRD) ve Fourier transform IR spektroskopisi (FTIR)
yöntemleri ile incelenmiştir. Isısal özellikleri ise termal gravimetrik analiz
(TGA) ile incelenmiştir. TGA analizinde, sentezlenen malzemenin 300 °C’e kadar
kararlı olduğu bulunmuştur. Üretilen bu malzemenin maliyeti düşüktür, ayrıca
ısıtıldığında 100 °C’nin üzerindeki sıcaklıklarda 300 °C ye kadar bozulmaya
uğramamaktadır. 300 °C’ye kadar olan ısısal kararlılığı ve su tutma kabiliyeti
sayesinde ZrP/PEO kompozit malzemesi, ara sıcaklık yakıt pillerinde
kullanılabilme potansiyeline sahiptir.


















References

  • REFERENCES
  • [1] M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. vol.25 pp.1463-502, 2000.
  • [2] JD. Lichtenhan, Y.A. Otonari, MJ. Gan, Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers, Macromolecules, vol.28 pp.8435-8437, 1995
  • [3] E. S. Cozza, Q. Ma, O. Monticelli and P. Cebe, ‘Nanostructured nanofibers based on PBT and POSS: Effect of POSS on the alignment and macromolecular orientation of the nanofibers’, European Polymer Journal, vol. no. 49, pp. 33–40, 2013.
  • [4] R. He, Q. Li, G. Xiao and N.J. Bjerrum, ‘Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors’. Journal of Mebrane Science, vol. 226 pp.169-184, 2003.
  • [5] B. Bonnet, D.J. Jones, L. Tchicaya, G. Alberti, M. Casciola, L. Massinelli, B. Bauer, A. Peraio and E. Ramunni, ‘Hybrid organic-inorganic membranes for a medium temperature fuel cell’. Journal of New materials for Electrochemical Systems, vol.3, pp.87-92, 2000.
  • [6] Q. Li, R. He, J.Q. Jensen and N.J. Bjerrum, ‘Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ◦C’. Chem Mater, vol.15 no.26, pp.4896–4915, 2003.
  • [7] M. Linlin, ‘Poly(2,5-benzimidazole)-silica nanocomposite membranes for high temperature proton exchange membrane fuel cell’, Journal of Membrane Science, vol.411-412, pp.91-98, 2012.
  • [8] W. Shuang, Z. Chengji, M. Wenjia, Z. Gang, L. Zhongguo, N. Jing, L. Mingyu,‘Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells’, Journal of Membrane Science 411-412, 54-63, 2012
  • [9] X. Meng and Z. Xian, ’Structure and thermal behavior of EPDM/POSS Composite Fiber Prepared by Electrospinning’, Journal of applied polymer science, DOI; 10.1002/app.38349.
  • [10] J. R. Stevens and B.E. Mellander, ‘Poly(ethylene oxide)-alkali metal-silver halide salt systems with high ionic conductivity at room temperature‘ Solid State Ionics, vol.21, pp.203-206, 1986.
  • [11] I. Honma, Y. Takeda, J.M. Bae, ‘Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules’, Solid State Ionics, vol.120, pp.255–264, 1999.
  • [12] J. Xi and X. Tang, Nanocomposite polymer electrolyte based on Poly(ethylene oxide) and solid super acid for lithium polymer battery, Chemical Physics Letters, vol. 393, pp.271–276, 2004.
  • [13] A. Goni-Urtiaga, D. Presvytes and K. Scott., 'Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review' International Journal of Hydrogen Energy, vol.37, pp.3358-3372, 2012.
  • [14] A. Clearfield, 'Inorganic ion exchangers with layered structures', Annual Reviews Material Science, vol.14, pp.205, 1984 [15] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, ‘Review of the proton exchange membranes for fuel cell applications’, International Journal Of Hydrogen Energy, vol.35, pp.9349-9384, 2010.

Synthesis and characterization of zirconium phosphate and poly(ethylene oxide) based polymer composite

Year 2018, , 748 - 754, 01.04.2018
https://doi.org/10.16984/saufenbilder.343027

Abstract

In this study, by using tetraethyl orthosilicate (TEOS) as
precursor, a composite material based on the zirkonium phosphate and poly (ethylene
oksit) (PEO) polymer (ZrP / PEO) has been prepared through the sol-gel method.
The characterisation of the obtained material has been carried out by using
flourer transform–infrared spectroscopy (FTIR) and X-ray diffraction (XRD)
methods. Thermal properties have been investigated with thermal gravimetric
analyzing (TGA). It has been founded that ZrP/PEO polymer composite material is
stable even up to 300 °C. Thanks to the thermal stability and water uptake
ability, ZrP/PEO polymer composite is the promising candidate to be used as a
medium temperature fuel-cell electrolyte material. 

References

  • REFERENCES
  • [1] M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. vol.25 pp.1463-502, 2000.
  • [2] JD. Lichtenhan, Y.A. Otonari, MJ. Gan, Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers, Macromolecules, vol.28 pp.8435-8437, 1995
  • [3] E. S. Cozza, Q. Ma, O. Monticelli and P. Cebe, ‘Nanostructured nanofibers based on PBT and POSS: Effect of POSS on the alignment and macromolecular orientation of the nanofibers’, European Polymer Journal, vol. no. 49, pp. 33–40, 2013.
  • [4] R. He, Q. Li, G. Xiao and N.J. Bjerrum, ‘Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors’. Journal of Mebrane Science, vol. 226 pp.169-184, 2003.
  • [5] B. Bonnet, D.J. Jones, L. Tchicaya, G. Alberti, M. Casciola, L. Massinelli, B. Bauer, A. Peraio and E. Ramunni, ‘Hybrid organic-inorganic membranes for a medium temperature fuel cell’. Journal of New materials for Electrochemical Systems, vol.3, pp.87-92, 2000.
  • [6] Q. Li, R. He, J.Q. Jensen and N.J. Bjerrum, ‘Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ◦C’. Chem Mater, vol.15 no.26, pp.4896–4915, 2003.
  • [7] M. Linlin, ‘Poly(2,5-benzimidazole)-silica nanocomposite membranes for high temperature proton exchange membrane fuel cell’, Journal of Membrane Science, vol.411-412, pp.91-98, 2012.
  • [8] W. Shuang, Z. Chengji, M. Wenjia, Z. Gang, L. Zhongguo, N. Jing, L. Mingyu,‘Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells’, Journal of Membrane Science 411-412, 54-63, 2012
  • [9] X. Meng and Z. Xian, ’Structure and thermal behavior of EPDM/POSS Composite Fiber Prepared by Electrospinning’, Journal of applied polymer science, DOI; 10.1002/app.38349.
  • [10] J. R. Stevens and B.E. Mellander, ‘Poly(ethylene oxide)-alkali metal-silver halide salt systems with high ionic conductivity at room temperature‘ Solid State Ionics, vol.21, pp.203-206, 1986.
  • [11] I. Honma, Y. Takeda, J.M. Bae, ‘Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules’, Solid State Ionics, vol.120, pp.255–264, 1999.
  • [12] J. Xi and X. Tang, Nanocomposite polymer electrolyte based on Poly(ethylene oxide) and solid super acid for lithium polymer battery, Chemical Physics Letters, vol. 393, pp.271–276, 2004.
  • [13] A. Goni-Urtiaga, D. Presvytes and K. Scott., 'Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review' International Journal of Hydrogen Energy, vol.37, pp.3358-3372, 2012.
  • [14] A. Clearfield, 'Inorganic ion exchangers with layered structures', Annual Reviews Material Science, vol.14, pp.205, 1984 [15] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, ‘Review of the proton exchange membranes for fuel cell applications’, International Journal Of Hydrogen Energy, vol.35, pp.9349-9384, 2010.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Asuman Çelik Küçük

Emrah Demirkal This is me

Publication Date April 1, 2018
Submission Date October 12, 2017
Acceptance Date April 1, 2018
Published in Issue Year 2018

Cite

APA Çelik Küçük, A., & Demirkal, E. (2018). Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu. Sakarya University Journal of Science, 22(2), 748-754. https://doi.org/10.16984/saufenbilder.343027
AMA Çelik Küçük A, Demirkal E. Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu. SAUJS. April 2018;22(2):748-754. doi:10.16984/saufenbilder.343027
Chicago Çelik Küçük, Asuman, and Emrah Demirkal. “Sol-Jel yöntemi Ile Zirkonyum Fosfat Ve Poli (etilen Oksit) Temelli Polimer Kompozit Malzeme (ZRP/PEO) Sentezi Ve Karakterizasyonu”. Sakarya University Journal of Science 22, no. 2 (April 2018): 748-54. https://doi.org/10.16984/saufenbilder.343027.
EndNote Çelik Küçük A, Demirkal E (April 1, 2018) Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu. Sakarya University Journal of Science 22 2 748–754.
IEEE A. Çelik Küçük and E. Demirkal, “Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu”, SAUJS, vol. 22, no. 2, pp. 748–754, 2018, doi: 10.16984/saufenbilder.343027.
ISNAD Çelik Küçük, Asuman - Demirkal, Emrah. “Sol-Jel yöntemi Ile Zirkonyum Fosfat Ve Poli (etilen Oksit) Temelli Polimer Kompozit Malzeme (ZRP/PEO) Sentezi Ve Karakterizasyonu”. Sakarya University Journal of Science 22/2 (April 2018), 748-754. https://doi.org/10.16984/saufenbilder.343027.
JAMA Çelik Küçük A, Demirkal E. Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu. SAUJS. 2018;22:748–754.
MLA Çelik Küçük, Asuman and Emrah Demirkal. “Sol-Jel yöntemi Ile Zirkonyum Fosfat Ve Poli (etilen Oksit) Temelli Polimer Kompozit Malzeme (ZRP/PEO) Sentezi Ve Karakterizasyonu”. Sakarya University Journal of Science, vol. 22, no. 2, 2018, pp. 748-54, doi:10.16984/saufenbilder.343027.
Vancouver Çelik Küçük A, Demirkal E. Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu. SAUJS. 2018;22(2):748-54.