Research Article
BibTex RIS Cite

Pseudo-mirror nuclei in the mass regions A~ 170 and A~ 200

Year 2018, , 1927 - 1930, 01.12.2018
https://doi.org/10.16984/saufenbilder.463978

Abstract

The concept of
pseudo-mirror nuclei is based on NπNν scheme introduced
as an extension of NpNnscheme. The NπNν scheme
tells us that if two nuclei from different mass region have equal number of
integrated n-p interaction than the experimental observables E(2+), E(4+)/E(2+)
and B(E2; 2+
→ 0+) are expected to be almost equal,
therefore equal number of n-p interaction build similar level schemes up to
certain spin quantum numbers. Pseudo-mirror nuclei have been introduced for the
first time in the mass regions A ~ 100 and A ~ 130 for Mo, Zr, Nd and Ce
nuclei.  Later, a systematic work carried
out over a broad region of Segre chart showed
that not only the excitation energies but also related B(E2) values of excited
states in Pseudo-mirror nuclei (PMN) are in good agreement. In the present
work, we present new pseudo-mirror nuclei in the mass region A ~ 170 and A ~
200 for the first time. 

References

  • [1] E. Rutherford, “LXXIX. The scattering of α and β particles by matter and the structure of the atom,” Philosophical Magazine Series 6, vol. 21, no. 125, pp. 669-688, 1911.
  • [2] P.W. Anderson, “More is different,” Science, vol. 177, no. 4047, pp. 393, 1972.
  • [3] W. Heisenberg, “Über den Bau der Atomkerne. I,” Zeitschrift für Physik A Hadrons and Nuclei, vol. 77, pp. 1, 1932.
  • [4] J. Ekman et.al, “The A = 51 mirror nuclei 51Fe and 51Mn,” The European Journal of Physics A, vol. 9, pp. 13–17, 2000.
  • [5] D. Tonev et.al, “Transition rates and nuclear structure changes in mirror nuclei 47Cr and 47V,” Physical Review C, vol. 65, pp. 034314, 2002.
  • [6] R. Wirowski et.al, “Valence mirror nuclei,” Journal of Physics G: Nuclear Physics, vol. 14, pp. L195, 1988.
  • [7] R.F. Casten et.al, “Simplified shell model calculations for valence mirror nuclei,” Nuclear Physics A, vol. 514, pp. 252, 1990.
  • [8] J. Yan et.al, “Proton-neutron symmetry in valence mirror nuclei,” Physical Review C, vol. 42, pp. 743, 1990.
  • [9] M. Schimmer et.al, “The valence mirror nuclei 114Sn and 146Gd,” Nuclear Physics A, vol. 569, pp. 458, 1994.
  • [10] R. Moscrop et.al, “Pseudo-mirror nuclei with A=100 and A=130,” Journal of Physics G: Nuclear Physics, vol. 14, pp. L189, 1989.
  • [11] R.F. Casten, “NpNn systematics in heavy nuclei,” Nuclear Physics A, vol. 443, pp. 1, 1985.
  • [12] B. Sayğı, “Investigation of the B(E2) systematics in pseudo-mirror nuclei,” Journal of Physics G: Nuclear Physics, vol. 45, pp. 095104, 2018.
  • [13] J. Blachot, “Nuclear Data Sheets for A = 108*,” Nuclear Data Sheets, vol. 90, pp. 135, 2000.
  • [14] J. Katakura and Z.D. Wu, “Nuclear Data Sheets for A = 124*,” Nuclear Data Sheets, vol. 109, pp. 1655, 2008.
  • [15] S.L. King et.al, “First observation of excited states in the neutron deficient nuclei 164Os and 166Os,” Physical Review C, vol. 62, pp. 067301, 2000.
  • [16] J.J. Ressler et.al, “Isomeric decay of 208Ra,” Physical Review C, vol. 71, pp. 014302, 2005.
  • [17] J.F.C. Cocks et.al, “Gamma-ray spectroscopy of neutron-deficient Ra isotopes,” Journal of Physics G: Nuclear Physics, vol. 25, pp. 839, 1999.
  • [18] G.D. Dracoulis et.al, “Shape coexistence from the structure of the yrast band in 174Pt,” Physical Review C, vol. 44, pp. R1246, 1991.
  • [19] R.B.E. Taylor et.al, “Gamma decay of excited states in 198Rn identified using correlated radioactive decay,” Physical Review C, vol. 59, pp. 673, 1999.
  • [20] S. Raman et.al, “Transition probability from the ground to the first-excited 2+ state of even-even nuclides,” Atomic Data and Nuclear Data Tables, vol. 78, pp. 1, 2001.
  • [21] P. Möller et.al, “Nuclear ground-state masses and deformations: FRDM(2012),” Atomic Data and Nuclear Data Tables, vol. 109-110, pp. 1, 2016.
  • [22] A. De-Shalit and M. Goldhaber, “Mixed configurations in nuclei,” Physical Review, vol. 92, pp. 1211, 1953.
  • [23] I. Talmi, “Effective interactions and coupling schemes in nuclei,” Reviews of Modern Physics, vol. 34, pp. 704, 1962.
  • [24] P. Federman and S. Pittel, “Towards a unified microscopic description of nuclear deformation,” Physics Letter B, vol. 69, pp. 385, 1977.
  • [25] P. Federman and S. Pittel, “Unified shell-model description of nuclear deformation,” Physical Review C, vol. 20, pp. 820, 1979.
Year 2018, , 1927 - 1930, 01.12.2018
https://doi.org/10.16984/saufenbilder.463978

Abstract

References

  • [1] E. Rutherford, “LXXIX. The scattering of α and β particles by matter and the structure of the atom,” Philosophical Magazine Series 6, vol. 21, no. 125, pp. 669-688, 1911.
  • [2] P.W. Anderson, “More is different,” Science, vol. 177, no. 4047, pp. 393, 1972.
  • [3] W. Heisenberg, “Über den Bau der Atomkerne. I,” Zeitschrift für Physik A Hadrons and Nuclei, vol. 77, pp. 1, 1932.
  • [4] J. Ekman et.al, “The A = 51 mirror nuclei 51Fe and 51Mn,” The European Journal of Physics A, vol. 9, pp. 13–17, 2000.
  • [5] D. Tonev et.al, “Transition rates and nuclear structure changes in mirror nuclei 47Cr and 47V,” Physical Review C, vol. 65, pp. 034314, 2002.
  • [6] R. Wirowski et.al, “Valence mirror nuclei,” Journal of Physics G: Nuclear Physics, vol. 14, pp. L195, 1988.
  • [7] R.F. Casten et.al, “Simplified shell model calculations for valence mirror nuclei,” Nuclear Physics A, vol. 514, pp. 252, 1990.
  • [8] J. Yan et.al, “Proton-neutron symmetry in valence mirror nuclei,” Physical Review C, vol. 42, pp. 743, 1990.
  • [9] M. Schimmer et.al, “The valence mirror nuclei 114Sn and 146Gd,” Nuclear Physics A, vol. 569, pp. 458, 1994.
  • [10] R. Moscrop et.al, “Pseudo-mirror nuclei with A=100 and A=130,” Journal of Physics G: Nuclear Physics, vol. 14, pp. L189, 1989.
  • [11] R.F. Casten, “NpNn systematics in heavy nuclei,” Nuclear Physics A, vol. 443, pp. 1, 1985.
  • [12] B. Sayğı, “Investigation of the B(E2) systematics in pseudo-mirror nuclei,” Journal of Physics G: Nuclear Physics, vol. 45, pp. 095104, 2018.
  • [13] J. Blachot, “Nuclear Data Sheets for A = 108*,” Nuclear Data Sheets, vol. 90, pp. 135, 2000.
  • [14] J. Katakura and Z.D. Wu, “Nuclear Data Sheets for A = 124*,” Nuclear Data Sheets, vol. 109, pp. 1655, 2008.
  • [15] S.L. King et.al, “First observation of excited states in the neutron deficient nuclei 164Os and 166Os,” Physical Review C, vol. 62, pp. 067301, 2000.
  • [16] J.J. Ressler et.al, “Isomeric decay of 208Ra,” Physical Review C, vol. 71, pp. 014302, 2005.
  • [17] J.F.C. Cocks et.al, “Gamma-ray spectroscopy of neutron-deficient Ra isotopes,” Journal of Physics G: Nuclear Physics, vol. 25, pp. 839, 1999.
  • [18] G.D. Dracoulis et.al, “Shape coexistence from the structure of the yrast band in 174Pt,” Physical Review C, vol. 44, pp. R1246, 1991.
  • [19] R.B.E. Taylor et.al, “Gamma decay of excited states in 198Rn identified using correlated radioactive decay,” Physical Review C, vol. 59, pp. 673, 1999.
  • [20] S. Raman et.al, “Transition probability from the ground to the first-excited 2+ state of even-even nuclides,” Atomic Data and Nuclear Data Tables, vol. 78, pp. 1, 2001.
  • [21] P. Möller et.al, “Nuclear ground-state masses and deformations: FRDM(2012),” Atomic Data and Nuclear Data Tables, vol. 109-110, pp. 1, 2016.
  • [22] A. De-Shalit and M. Goldhaber, “Mixed configurations in nuclei,” Physical Review, vol. 92, pp. 1211, 1953.
  • [23] I. Talmi, “Effective interactions and coupling schemes in nuclei,” Reviews of Modern Physics, vol. 34, pp. 704, 1962.
  • [24] P. Federman and S. Pittel, “Towards a unified microscopic description of nuclear deformation,” Physics Letter B, vol. 69, pp. 385, 1977.
  • [25] P. Federman and S. Pittel, “Unified shell-model description of nuclear deformation,” Physical Review C, vol. 20, pp. 820, 1979.
There are 25 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Bahadir Saygı 0000-0001-5406-506X

Publication Date December 1, 2018
Submission Date September 26, 2018
Acceptance Date November 14, 2018
Published in Issue Year 2018

Cite

APA Saygı, B. (2018). Pseudo-mirror nuclei in the mass regions A~ 170 and A~ 200. Sakarya University Journal of Science, 22(6), 1927-1930. https://doi.org/10.16984/saufenbilder.463978
AMA Saygı B. Pseudo-mirror nuclei in the mass regions A~ 170 and A~ 200. SAUJS. December 2018;22(6):1927-1930. doi:10.16984/saufenbilder.463978
Chicago Saygı, Bahadir. “Pseudo-Mirror Nuclei in the Mass Regions A~ 170 and A~ 200”. Sakarya University Journal of Science 22, no. 6 (December 2018): 1927-30. https://doi.org/10.16984/saufenbilder.463978.
EndNote Saygı B (December 1, 2018) Pseudo-mirror nuclei in the mass regions A~ 170 and A~ 200. Sakarya University Journal of Science 22 6 1927–1930.
IEEE B. Saygı, “Pseudo-mirror nuclei in the mass regions A~ 170 and A~ 200”, SAUJS, vol. 22, no. 6, pp. 1927–1930, 2018, doi: 10.16984/saufenbilder.463978.
ISNAD Saygı, Bahadir. “Pseudo-Mirror Nuclei in the Mass Regions A~ 170 and A~ 200”. Sakarya University Journal of Science 22/6 (December 2018), 1927-1930. https://doi.org/10.16984/saufenbilder.463978.
JAMA Saygı B. Pseudo-mirror nuclei in the mass regions A~ 170 and A~ 200. SAUJS. 2018;22:1927–1930.
MLA Saygı, Bahadir. “Pseudo-Mirror Nuclei in the Mass Regions A~ 170 and A~ 200”. Sakarya University Journal of Science, vol. 22, no. 6, 2018, pp. 1927-30, doi:10.16984/saufenbilder.463978.
Vancouver Saygı B. Pseudo-mirror nuclei in the mass regions A~ 170 and A~ 200. SAUJS. 2018;22(6):1927-30.