Research Article
BibTex RIS Cite
Year 2019, , 633 - 640, 01.08.2019
https://doi.org/10.16984/saufenbilder.464841

Abstract

References

  • [1] I. Janajreh, M. Alshrah, and S. Zamzam, "Mechanical recycling of PVC plastic waste streams from cable industry: A case study," Sustainable Cities and Society, vol. 18, pp. 13-20, 11// 2015.
  • [2] H. C. Bidsorkhi, M. Soheilmoghaddam, R. H. Pour, H. Adelnia, and Z. Mohamad, "Mechanical, thermal and flammability properties of ethylene-vinyl acetate (EVA)/sepiolite nanocomposites," Polymer Testing, vol. 37, pp. 117-122, 8// 2014.
  • [3] R. A. Khan et al., "Fabrication and Characterization of Jute Fabric-Reinforced PVC-based Composite," Journal of Thermoplastic Composite Materials, vol. 25, no. 1, pp. 45-58, 2012.
  • [4] K. Deshmukh, S. M. Khatake, and G. M. Joshi, "Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites," Journal of Polymer Research, journal article vol. 20, no. 11, p. 286, October 25 2013.
  • [5] N. M. Saadatabadi, M. R. Nateghi, and M. Borhanizarandi, "Fabrication and characterization of nanosilver intercalated graphene embedded poly(vinyl chloride)composite thin films," Journal of Polymer Research, journal article vol. 21, no. 8, p. 527, July 14 2014.
  • [6] W. Yuan, J. Cui, Y. Cai, and S. Xu, "A novel surface modification for calcium sulfate whisker used for reinforcement of poly(vinyl chloride)," Journal of Polymer Research, journal article vol. 22, no. 9, p. 173, August 12 2015.
  • [7] R. Benlikaya, M. Alkan, and İ. Kaya, "Preparation and characterization of sepiolite-poly(ethyl methacrylate) and poly(2-hydroxyethyl methacrylate) nanocomposites," Polymer Composites, vol. 30, no. 11, pp. 1585-1594, 2009.
  • [8] P. Liu, M. Zhao, and J. Guo, "Thermal Stabilities of Poly(Vinyl Chloride)/Calcium Carbonate (PVC/CaCO3) Composites," Journal of Macromolecular Science, Part B, vol. 45, no. 6, pp. 1135-1140, 2006/12/01 2006.
  • [9] L. Zhang, X. Chen, and C. Li, "Mechanical properties of PVC/nano-CaCO3 composites," (in English), Journal of Materials Science, vol. 40, no. 8, pp. 2097-2098, 2005/04/01 2005.
  • [10] N. Chen, C. Wan, Y. Zhang, Y. Zhang, and C. Zhang, "Fracture behavior of PVC/Blendex/nano-CaCO3 composites," Journal of Applied Polymer Science, vol. 95, no. 4, pp. 953-961, 2005.
  • [11] Z. Demjén, B. Pukánszky, and J. Nagy, "Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites," Composites Part A: Applied Science and Manufacturing, vol. 29, no. 3, pp. 323-329, // 1998.
  • [12] Y. Turhan, M. Doǧan, and M. Alkan, "Characterization and Some Properties of Poly(vinyl chloride)/Sepiolite Nanocomposites," Advances in Polymer Technology, vol. 32, no. S1, pp. E65-E82, 2013.
  • [13] J. Jančař, "Influence of filler particle shape on elastic moduli of PP/CaCO3 and PP/Mg(OH)2 composites," (in English), Journal of Materials Science, vol. 24, no. 11, pp. 3947-3955, 1989/11/01 1989.
  • [14] G. Onuegbu and I. Igwe, "The Effects of Filler Contents and Particle Sizes on the Mechanical and End-Use Properties of Snail Shell Powder Filled Polypropylene," Materials Sciences and Applications, vol. 2, no. 7, pp. 810-816, 2011.
  • [15] S. P. Deshmukh, A. C. Rao, V. R. Gaval, and P. A. Mahanwar, "Mica-Filled PVC Composites: Effect of Particle Size, Filler Concentration, and Surface Treatment of the Filler, on Mechanical and Electrical Properties of the Composites," Journal of Thermoplastic Composite Materials, vol. 24, no. 5, pp. 583-599, 2011.
  • [16] N. G. Shimpi and S. Mishra, "Influence of surface modification of montomorillonite on properties of PVC nanocomposites," Journal of Composite Materials, vol. 45, no. 23, pp. 2447-2453, 2011.
  • [17] N. Chen, C. Wan, Y. Zhang, and Y. Zhang, "Effect of nano-CaCO3 on mechanical properties of PVC and PVC/Blendex blend," Polymer Testing, vol. 23, no. 2, pp. 169-174, 4// 2004.
  • [18] X. Chen, C. Li, S. Xu, L. Zhang, W. Shao, and H. L. Du, "Interfacial adhesion and mechanical properties of PMMA-coated CaCO3 nanoparticle reinforced PVC composites," China Particuology, vol. 4, no. 1, pp. 25-30, 2// 2006.
  • [19] B. Nekhamanurak, P. Patanathabutr, and N. Hongsriphan, "The Influence of Micro-/Nano-CaCO3 on Thermal Stability and Melt Rheology Behavior of Poly(Lactic Acid)," Energy Procedia, vol. 56, pp. 118-128, // 2014.
  • [20] B. Egrdoğan Alver, M. Sakici, E. Yörükoğullari, Y. Yilmaz, and M. Güven, "Thermal behavior and water adsorption of natural and modified sepiolite having dolomite from Turkey," (in English), Journal of Thermal Analysis and Calorimetry, vol. 94, no. 3, pp. 835-840, 2008/12/01 2008.
  • [21] J. Li, J. Liang, F. Wang, and L. Wang, "Effect of sepiolite fibers addition on sintering behavior of sanitary bodies," Applied Clay Science, vol. 105–106, pp. 231-235, 3// 2015.
  • [22] F. Laoutid, O. Persenaire, L. Bonnaud, and P. Dubois, "Flame retardant polypropylene through the joint action of sepiolite and polyamide 6," Polymer Degradation and Stability, vol. 98, no. 10, pp. 1972-1980, 10// 2013.
  • [23] J. Ma, E. Bilotti, T. Peijs, and J. A. Darr, "Preparation of polypropylene/sepiolite nanocomposites using supercritical CO2 assisted mixing," European Polymer Journal, vol. 43, no. 12, pp. 4931-4939, 12// 2007.
  • [24] M. Nieto-Suarez et al., "Self-assembled titania-silica-sepiolite based nanocomposites for water decontamination," Journal of Materials Chemistry, 10.1039/B813864H vol. 19, no. 14, pp. 2070-2075, 2009.
  • [25] E. García-Romero and M. Suárez, "On the Chemical Composition of Sepiolite and Palygorskite," Clays and Clay Minerals, vol. 58, no. 1, pp. 1-20, // 2010.
  • [26] S. S. Sun, C. Z. Li, L. Zhang, H. M. Cao, and H. L. Du, Interface design and mechanical properties of SiO2/PVC nanocomposites. 2006, pp. 798-803.
  • [27] G. Chen, M. Tian, and S. Guo, "A Study on the Morphology and Mechanical Properties of PVC/nano‐SiO2 Composites," Journal of Macromolecular Science, Part B, vol. 45, no. 5, pp. 709-725, 2006/10/01 2006.
  • [28] X.-L. Xie et al., "Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization," Polymer, vol. 45, no. 19, pp. 6665-6673, 2004/09/03/ 2004.
  • [29] A. E. Lavat and M. C. Grasselli, "Synthesis and Characterization of Ceramic Materials Based on the System MgO-CaO-TiO2 from Dolomite," Procedia Materials Science, vol. 8, pp. 162-171, // 2015.
  • [30] Donahoe RJ , Ltou JG , and G. S, "Synthesıs and characterızatıon Of zeolıtes in the system Na~O-K20-A1203-SiO2-H/O " Clays and clay minerals, vol. 32, no. 6, pp. 433-443, 1984.
  • [31] B. Kayyarapu, M. Kumar Y., H. B. Mohommad, G. Neeruganti O., and R. Chekuri, "Structural, Thermal and Optical Properties of Pure and Mn2+ Doped Poly(Vinyl Chloride) Films," Materials Research, vol. 19, pp. 1167-1175, 2016.

Chemical and mechanical properties analysis of extruded polyvinyl choloride (PVC)/sepiolite composite

Year 2019, , 633 - 640, 01.08.2019
https://doi.org/10.16984/saufenbilder.464841

Abstract

In this
study, poly vinyl chloride (PVC)/ sepiolite composites were produced using an
extruder. Two different sepiolite powders: white and gray were added to the PVC
in order; 5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%. The morphology alteration,
chemical behavior and mechanical properties of the powders and the composites
were examined by X-ray fluorescence (XRF), tensile test, X-ray diffraction
(XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron
microscopy (SEM) and ultimate tensile strength (UTS). The results showed that the
sepiolite white powder had 20.72 wt.% CaO and approximately half of the 20.81
wt.% SiO2 as compared to the sepiolite gray powder. The XRD analysis confirmed
that the structure of calcined white sepiolite contained dolomite, while gray calcined-sepiolite
contained zeolite. The composites with 5 wt.% sepiolite white or gray powders
exhibited higher tensile strength. Increasing the quantity of both sepiolite
powders in the composites deteriorated the surface with cracks and shifted the thermal
degradation of the sepiolite gray toward higher temperatures. 

References

  • [1] I. Janajreh, M. Alshrah, and S. Zamzam, "Mechanical recycling of PVC plastic waste streams from cable industry: A case study," Sustainable Cities and Society, vol. 18, pp. 13-20, 11// 2015.
  • [2] H. C. Bidsorkhi, M. Soheilmoghaddam, R. H. Pour, H. Adelnia, and Z. Mohamad, "Mechanical, thermal and flammability properties of ethylene-vinyl acetate (EVA)/sepiolite nanocomposites," Polymer Testing, vol. 37, pp. 117-122, 8// 2014.
  • [3] R. A. Khan et al., "Fabrication and Characterization of Jute Fabric-Reinforced PVC-based Composite," Journal of Thermoplastic Composite Materials, vol. 25, no. 1, pp. 45-58, 2012.
  • [4] K. Deshmukh, S. M. Khatake, and G. M. Joshi, "Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites," Journal of Polymer Research, journal article vol. 20, no. 11, p. 286, October 25 2013.
  • [5] N. M. Saadatabadi, M. R. Nateghi, and M. Borhanizarandi, "Fabrication and characterization of nanosilver intercalated graphene embedded poly(vinyl chloride)composite thin films," Journal of Polymer Research, journal article vol. 21, no. 8, p. 527, July 14 2014.
  • [6] W. Yuan, J. Cui, Y. Cai, and S. Xu, "A novel surface modification for calcium sulfate whisker used for reinforcement of poly(vinyl chloride)," Journal of Polymer Research, journal article vol. 22, no. 9, p. 173, August 12 2015.
  • [7] R. Benlikaya, M. Alkan, and İ. Kaya, "Preparation and characterization of sepiolite-poly(ethyl methacrylate) and poly(2-hydroxyethyl methacrylate) nanocomposites," Polymer Composites, vol. 30, no. 11, pp. 1585-1594, 2009.
  • [8] P. Liu, M. Zhao, and J. Guo, "Thermal Stabilities of Poly(Vinyl Chloride)/Calcium Carbonate (PVC/CaCO3) Composites," Journal of Macromolecular Science, Part B, vol. 45, no. 6, pp. 1135-1140, 2006/12/01 2006.
  • [9] L. Zhang, X. Chen, and C. Li, "Mechanical properties of PVC/nano-CaCO3 composites," (in English), Journal of Materials Science, vol. 40, no. 8, pp. 2097-2098, 2005/04/01 2005.
  • [10] N. Chen, C. Wan, Y. Zhang, Y. Zhang, and C. Zhang, "Fracture behavior of PVC/Blendex/nano-CaCO3 composites," Journal of Applied Polymer Science, vol. 95, no. 4, pp. 953-961, 2005.
  • [11] Z. Demjén, B. Pukánszky, and J. Nagy, "Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites," Composites Part A: Applied Science and Manufacturing, vol. 29, no. 3, pp. 323-329, // 1998.
  • [12] Y. Turhan, M. Doǧan, and M. Alkan, "Characterization and Some Properties of Poly(vinyl chloride)/Sepiolite Nanocomposites," Advances in Polymer Technology, vol. 32, no. S1, pp. E65-E82, 2013.
  • [13] J. Jančař, "Influence of filler particle shape on elastic moduli of PP/CaCO3 and PP/Mg(OH)2 composites," (in English), Journal of Materials Science, vol. 24, no. 11, pp. 3947-3955, 1989/11/01 1989.
  • [14] G. Onuegbu and I. Igwe, "The Effects of Filler Contents and Particle Sizes on the Mechanical and End-Use Properties of Snail Shell Powder Filled Polypropylene," Materials Sciences and Applications, vol. 2, no. 7, pp. 810-816, 2011.
  • [15] S. P. Deshmukh, A. C. Rao, V. R. Gaval, and P. A. Mahanwar, "Mica-Filled PVC Composites: Effect of Particle Size, Filler Concentration, and Surface Treatment of the Filler, on Mechanical and Electrical Properties of the Composites," Journal of Thermoplastic Composite Materials, vol. 24, no. 5, pp. 583-599, 2011.
  • [16] N. G. Shimpi and S. Mishra, "Influence of surface modification of montomorillonite on properties of PVC nanocomposites," Journal of Composite Materials, vol. 45, no. 23, pp. 2447-2453, 2011.
  • [17] N. Chen, C. Wan, Y. Zhang, and Y. Zhang, "Effect of nano-CaCO3 on mechanical properties of PVC and PVC/Blendex blend," Polymer Testing, vol. 23, no. 2, pp. 169-174, 4// 2004.
  • [18] X. Chen, C. Li, S. Xu, L. Zhang, W. Shao, and H. L. Du, "Interfacial adhesion and mechanical properties of PMMA-coated CaCO3 nanoparticle reinforced PVC composites," China Particuology, vol. 4, no. 1, pp. 25-30, 2// 2006.
  • [19] B. Nekhamanurak, P. Patanathabutr, and N. Hongsriphan, "The Influence of Micro-/Nano-CaCO3 on Thermal Stability and Melt Rheology Behavior of Poly(Lactic Acid)," Energy Procedia, vol. 56, pp. 118-128, // 2014.
  • [20] B. Egrdoğan Alver, M. Sakici, E. Yörükoğullari, Y. Yilmaz, and M. Güven, "Thermal behavior and water adsorption of natural and modified sepiolite having dolomite from Turkey," (in English), Journal of Thermal Analysis and Calorimetry, vol. 94, no. 3, pp. 835-840, 2008/12/01 2008.
  • [21] J. Li, J. Liang, F. Wang, and L. Wang, "Effect of sepiolite fibers addition on sintering behavior of sanitary bodies," Applied Clay Science, vol. 105–106, pp. 231-235, 3// 2015.
  • [22] F. Laoutid, O. Persenaire, L. Bonnaud, and P. Dubois, "Flame retardant polypropylene through the joint action of sepiolite and polyamide 6," Polymer Degradation and Stability, vol. 98, no. 10, pp. 1972-1980, 10// 2013.
  • [23] J. Ma, E. Bilotti, T. Peijs, and J. A. Darr, "Preparation of polypropylene/sepiolite nanocomposites using supercritical CO2 assisted mixing," European Polymer Journal, vol. 43, no. 12, pp. 4931-4939, 12// 2007.
  • [24] M. Nieto-Suarez et al., "Self-assembled titania-silica-sepiolite based nanocomposites for water decontamination," Journal of Materials Chemistry, 10.1039/B813864H vol. 19, no. 14, pp. 2070-2075, 2009.
  • [25] E. García-Romero and M. Suárez, "On the Chemical Composition of Sepiolite and Palygorskite," Clays and Clay Minerals, vol. 58, no. 1, pp. 1-20, // 2010.
  • [26] S. S. Sun, C. Z. Li, L. Zhang, H. M. Cao, and H. L. Du, Interface design and mechanical properties of SiO2/PVC nanocomposites. 2006, pp. 798-803.
  • [27] G. Chen, M. Tian, and S. Guo, "A Study on the Morphology and Mechanical Properties of PVC/nano‐SiO2 Composites," Journal of Macromolecular Science, Part B, vol. 45, no. 5, pp. 709-725, 2006/10/01 2006.
  • [28] X.-L. Xie et al., "Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization," Polymer, vol. 45, no. 19, pp. 6665-6673, 2004/09/03/ 2004.
  • [29] A. E. Lavat and M. C. Grasselli, "Synthesis and Characterization of Ceramic Materials Based on the System MgO-CaO-TiO2 from Dolomite," Procedia Materials Science, vol. 8, pp. 162-171, // 2015.
  • [30] Donahoe RJ , Ltou JG , and G. S, "Synthesıs and characterızatıon Of zeolıtes in the system Na~O-K20-A1203-SiO2-H/O " Clays and clay minerals, vol. 32, no. 6, pp. 433-443, 1984.
  • [31] B. Kayyarapu, M. Kumar Y., H. B. Mohommad, G. Neeruganti O., and R. Chekuri, "Structural, Thermal and Optical Properties of Pure and Mn2+ Doped Poly(Vinyl Chloride) Films," Materials Research, vol. 19, pp. 1167-1175, 2016.
There are 31 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Mustafa Özgür Öteyaka 0000-0002-1488-6098

Hasan Candan Öteyaka 0000-0001-7807-6206

Publication Date August 1, 2019
Submission Date September 27, 2018
Acceptance Date February 14, 2019
Published in Issue Year 2019

Cite

APA Öteyaka, M. Ö., & Öteyaka, H. C. (2019). Chemical and mechanical properties analysis of extruded polyvinyl choloride (PVC)/sepiolite composite. Sakarya University Journal of Science, 23(4), 633-640. https://doi.org/10.16984/saufenbilder.464841
AMA Öteyaka MÖ, Öteyaka HC. Chemical and mechanical properties analysis of extruded polyvinyl choloride (PVC)/sepiolite composite. SAUJS. August 2019;23(4):633-640. doi:10.16984/saufenbilder.464841
Chicago Öteyaka, Mustafa Özgür, and Hasan Candan Öteyaka. “Chemical and Mechanical Properties Analysis of Extruded Polyvinyl Choloride (PVC)/Sepiolite Composite”. Sakarya University Journal of Science 23, no. 4 (August 2019): 633-40. https://doi.org/10.16984/saufenbilder.464841.
EndNote Öteyaka MÖ, Öteyaka HC (August 1, 2019) Chemical and mechanical properties analysis of extruded polyvinyl choloride (PVC)/sepiolite composite. Sakarya University Journal of Science 23 4 633–640.
IEEE M. Ö. Öteyaka and H. C. Öteyaka, “Chemical and mechanical properties analysis of extruded polyvinyl choloride (PVC)/sepiolite composite”, SAUJS, vol. 23, no. 4, pp. 633–640, 2019, doi: 10.16984/saufenbilder.464841.
ISNAD Öteyaka, Mustafa Özgür - Öteyaka, Hasan Candan. “Chemical and Mechanical Properties Analysis of Extruded Polyvinyl Choloride (PVC)/Sepiolite Composite”. Sakarya University Journal of Science 23/4 (August 2019), 633-640. https://doi.org/10.16984/saufenbilder.464841.
JAMA Öteyaka MÖ, Öteyaka HC. Chemical and mechanical properties analysis of extruded polyvinyl choloride (PVC)/sepiolite composite. SAUJS. 2019;23:633–640.
MLA Öteyaka, Mustafa Özgür and Hasan Candan Öteyaka. “Chemical and Mechanical Properties Analysis of Extruded Polyvinyl Choloride (PVC)/Sepiolite Composite”. Sakarya University Journal of Science, vol. 23, no. 4, 2019, pp. 633-40, doi:10.16984/saufenbilder.464841.
Vancouver Öteyaka MÖ, Öteyaka HC. Chemical and mechanical properties analysis of extruded polyvinyl choloride (PVC)/sepiolite composite. SAUJS. 2019;23(4):633-40.