and ScIr 2," Powder Metallurgy and Metal Ceramics, vol. 39, pp. 55-58, 2000." />
Research Article
BibTex RIS Cite

The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2

Year 2020, , 406 - 411, 01.04.2020
https://doi.org/10.16984/saufenbilder.680230

Abstract

The structural and electronic properties of face-centred cubic ScIr2 compound is investigated by using a generalised gradient approximation scheme of density functional theory with and without spin-orbit interaction. The structural results show that the spin-orbit interaction has a negligible effect for the crystallizing of ScIr2 compound. The Fermi surface calculations suggest considerable nesting along Γ-X direction that could affect the vibrational properties.

References

  • [1] E. Deligoz, K. Colakoglu, H. Ozisik, and Y. Cifti, "The first principles investigation of lattice dynamical and thermodynamical properties of Al2Ca and Al2Mg compounds in the cubic Laves structure," Computational materials science, vol. 68, pp. 27-31, 2013.
  • [2] S. Chen, Y. Sun, Y.-H. Duan, B. Huang, and M.-J. Peng, "Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations," Journal of Alloys and Compounds, vol. 630, pp. 202-208, 2015.
  • [3] E. Deligoz, H. Ozisik, and K. Colakoglu, "Theoretical predictions of the structural, mechanical and lattice dynamical properties of XW2 (X= Zr, Hf) Laves phases," Philosophical Magazine, vol. 94, pp. 1379-1392, 2014.
  • [4] M. I. Kholil, M. Z. Rahaman, and M. A. Rahman, "First principles study of the structural, elastic, electronic, optical and thermodynamic properties of SrRh2 laves phase intermetallic compound," Computational Condensed Matter, vol. 13, pp. 65-71, 2017.
  • [5] U. Atzmony, M. Dariel, E. Bauminger, D. Lebenbaum, I. Nowik, and S. Ofer, "Spin-orientation diagrams and magnetic anisotropy of rare-earth-iron ternary cubic laves compounds," Physical Review B, vol. 7, p. 4220, 1973.
  • [6] U. Atzmony and M. Dariel, "Nonmajor cubic symmetry axes of easy magnetization in rare-earth-iron Laves compounds," Physical Review B, vol. 13, p. 4006, 1976.
  • [7] U. Atzmony, M. Dariel, E. Bauminger, D. Lebenbaum, I. Nowik, and S. Ofer, "Magnetic Anisotropy and Spin Rotations in Ho x Tb 1− x Fe 2 Cubic Laves Compounds," Physical Review Letters, vol. 28, p. 244, 1972.
  • [8] Ö. Rapp, J. Invarsson, and T. Claeson, "Search for superconductivity in Laves phase compounds," Physics Letters A, vol. 50, pp. 159-160, 1974.
  • [9] H. Tütüncü, H. Uzunok, E. Karaca, E. Arslan, and G. Srivastava, "Effects of spin-orbit coupling on the electron-phonon superconductivity in the cubic Laves-phase compounds CaIr 2 and CaRh 2," Physical Review B, vol. 96, p. 134514, 2017.
  • [10] V. B. Compton and B. T. Matthias, "Laves phase compounds of rare earths and hafnium with noble metals," Acta Crystallographica, vol. 12, pp. 651-654, 1959.
  • [11] T. Geballe, B. Matthias, V. Compton, E. Corenzwit, G. Hull Jr, and L. D. Longinotti, "Superconductivity in binary alloy systems of the rare earths and of thorium with Pt-group metals," Physical Review, vol. 137, p. A119, 1965.
  • [12] L. Goncharuk, V. Sidorko, V. Khoruzhaya, and T. Y. Velikanova, "Thermodynamic parameters of scandium-iridium compounds< ScIr 3> and ScIr 2," Powder Metallurgy and Metal Ceramics, vol. 39, pp. 55-58, 2000.
  • [13] D. Shrivastava and S. Sanyal, "Structural, electronic and elastic properties of REIr 2 (RE= Sc, Y and La) Laves phase compounds under pressure," Indian Journal of Physics, vol. 91, pp. 183-190, 2017.
  • [14] U. K. Chowdhury and T. C. Saha, "An ab-initio Investigation: The Physical Properties of ScIr 2 Superconductor," Physics of the Solid State, vol. 61, pp. 530-536, 2019.
  • [15] F. Murnaghan, "The compressibility of media under extreme pressures," Proceedings of the National Academy of Sciences, vol. 30, pp. 244-247, 1944.
  • [16] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, et al., "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials," Journal of physics: Condensed matter, vol. 21, p. 395502, 2009.
  • [17] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, et al., "Advanced capabilities for materials modelling with Quantum ESPRESSO," Journal of Physics: Condensed Matter, vol. 29, p. 465901, 2017.
  • [18] R. Stumpf, X. Gonze, and M. Scheffler, A list of separable, norm-conserving, ab-initio pseudopotentials: Fotocopia: Fritz-Haber-Institute, 1990.
  • [19] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical review letters, vol. 77, p. 3865, 1996.
  • [20] H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations," Physical review B, vol. 13, p. 5188, 1976.
Year 2020, , 406 - 411, 01.04.2020
https://doi.org/10.16984/saufenbilder.680230

Abstract

References

  • [1] E. Deligoz, K. Colakoglu, H. Ozisik, and Y. Cifti, "The first principles investigation of lattice dynamical and thermodynamical properties of Al2Ca and Al2Mg compounds in the cubic Laves structure," Computational materials science, vol. 68, pp. 27-31, 2013.
  • [2] S. Chen, Y. Sun, Y.-H. Duan, B. Huang, and M.-J. Peng, "Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations," Journal of Alloys and Compounds, vol. 630, pp. 202-208, 2015.
  • [3] E. Deligoz, H. Ozisik, and K. Colakoglu, "Theoretical predictions of the structural, mechanical and lattice dynamical properties of XW2 (X= Zr, Hf) Laves phases," Philosophical Magazine, vol. 94, pp. 1379-1392, 2014.
  • [4] M. I. Kholil, M. Z. Rahaman, and M. A. Rahman, "First principles study of the structural, elastic, electronic, optical and thermodynamic properties of SrRh2 laves phase intermetallic compound," Computational Condensed Matter, vol. 13, pp. 65-71, 2017.
  • [5] U. Atzmony, M. Dariel, E. Bauminger, D. Lebenbaum, I. Nowik, and S. Ofer, "Spin-orientation diagrams and magnetic anisotropy of rare-earth-iron ternary cubic laves compounds," Physical Review B, vol. 7, p. 4220, 1973.
  • [6] U. Atzmony and M. Dariel, "Nonmajor cubic symmetry axes of easy magnetization in rare-earth-iron Laves compounds," Physical Review B, vol. 13, p. 4006, 1976.
  • [7] U. Atzmony, M. Dariel, E. Bauminger, D. Lebenbaum, I. Nowik, and S. Ofer, "Magnetic Anisotropy and Spin Rotations in Ho x Tb 1− x Fe 2 Cubic Laves Compounds," Physical Review Letters, vol. 28, p. 244, 1972.
  • [8] Ö. Rapp, J. Invarsson, and T. Claeson, "Search for superconductivity in Laves phase compounds," Physics Letters A, vol. 50, pp. 159-160, 1974.
  • [9] H. Tütüncü, H. Uzunok, E. Karaca, E. Arslan, and G. Srivastava, "Effects of spin-orbit coupling on the electron-phonon superconductivity in the cubic Laves-phase compounds CaIr 2 and CaRh 2," Physical Review B, vol. 96, p. 134514, 2017.
  • [10] V. B. Compton and B. T. Matthias, "Laves phase compounds of rare earths and hafnium with noble metals," Acta Crystallographica, vol. 12, pp. 651-654, 1959.
  • [11] T. Geballe, B. Matthias, V. Compton, E. Corenzwit, G. Hull Jr, and L. D. Longinotti, "Superconductivity in binary alloy systems of the rare earths and of thorium with Pt-group metals," Physical Review, vol. 137, p. A119, 1965.
  • [12] L. Goncharuk, V. Sidorko, V. Khoruzhaya, and T. Y. Velikanova, "Thermodynamic parameters of scandium-iridium compounds< ScIr 3> and ScIr 2," Powder Metallurgy and Metal Ceramics, vol. 39, pp. 55-58, 2000.
  • [13] D. Shrivastava and S. Sanyal, "Structural, electronic and elastic properties of REIr 2 (RE= Sc, Y and La) Laves phase compounds under pressure," Indian Journal of Physics, vol. 91, pp. 183-190, 2017.
  • [14] U. K. Chowdhury and T. C. Saha, "An ab-initio Investigation: The Physical Properties of ScIr 2 Superconductor," Physics of the Solid State, vol. 61, pp. 530-536, 2019.
  • [15] F. Murnaghan, "The compressibility of media under extreme pressures," Proceedings of the National Academy of Sciences, vol. 30, pp. 244-247, 1944.
  • [16] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, et al., "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials," Journal of physics: Condensed matter, vol. 21, p. 395502, 2009.
  • [17] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, et al., "Advanced capabilities for materials modelling with Quantum ESPRESSO," Journal of Physics: Condensed Matter, vol. 29, p. 465901, 2017.
  • [18] R. Stumpf, X. Gonze, and M. Scheffler, A list of separable, norm-conserving, ab-initio pseudopotentials: Fotocopia: Fritz-Haber-Institute, 1990.
  • [19] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical review letters, vol. 77, p. 3865, 1996.
  • [20] H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations," Physical review B, vol. 13, p. 5188, 1976.
There are 20 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Huseyin Yasin Uzunok 0000-0002-2130-1748

Publication Date April 1, 2020
Submission Date January 26, 2020
Acceptance Date February 18, 2020
Published in Issue Year 2020

Cite

APA Uzunok, H. Y. (2020). The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2. Sakarya University Journal of Science, 24(2), 406-411. https://doi.org/10.16984/saufenbilder.680230
AMA Uzunok HY. The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2. SAUJS. April 2020;24(2):406-411. doi:10.16984/saufenbilder.680230
Chicago Uzunok, Huseyin Yasin. “The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2”. Sakarya University Journal of Science 24, no. 2 (April 2020): 406-11. https://doi.org/10.16984/saufenbilder.680230.
EndNote Uzunok HY (April 1, 2020) The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2. Sakarya University Journal of Science 24 2 406–411.
IEEE H. Y. Uzunok, “The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2”, SAUJS, vol. 24, no. 2, pp. 406–411, 2020, doi: 10.16984/saufenbilder.680230.
ISNAD Uzunok, Huseyin Yasin. “The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2”. Sakarya University Journal of Science 24/2 (April 2020), 406-411. https://doi.org/10.16984/saufenbilder.680230.
JAMA Uzunok HY. The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2. SAUJS. 2020;24:406–411.
MLA Uzunok, Huseyin Yasin. “The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2”. Sakarya University Journal of Science, vol. 24, no. 2, 2020, pp. 406-11, doi:10.16984/saufenbilder.680230.
Vancouver Uzunok HY. The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2. SAUJS. 2020;24(2):406-11.