Research Article
BibTex RIS Cite

Photoluminescence Investigation of Tb Doped Yb2O3 Phosphors Produced by Precipitation Method

Year 2021, , 1031 - 1036, 30.08.2021
https://doi.org/10.16984/saufenbilder.895402

Abstract

Un-doped and Tb doped ytterbium oxide (Yb2O3:Tb3+) particles with different dopant rates (2, 4, 6 and 8 at. %) were produced by precipitation method, subsequently by calcination at 1000 °C for 2 h. The crystal structure of all the particles had cubic Yb2O3 structure. The presence of Tb ion in Yb2O3 host structure has been proven from the XRD results. The crystal structure expanded compared to un-doped Yb2O3 particles with the dopant addition confirming lattice parameter (LP) values. LP and crystallite size (CS) values were in the range of 10.428 – 10.596 Å and 16 – 25 nm, respectively. Only one sharp peak was observed at 506 nm corresponding to 5D47F6 transition (green emission) from photoluminescence (PL) spectra of the phosphor particles. The PL emission intensities were strongly dependent on both CS and dopant rate. However, the dopant rate was more effective on the PL intensity than the CS.

References

  • [1] Kumar, S., Chaudhary, S., Chaudhary, G.R. 2020. Modulating physicochemical properties in Gd3+@Yb2O3 nanospheres for efficient electrochemical monitoring of H2O2. Materials Science and Engineering C, 114, 111059.
  • [2] Yang, J., Shen, J., Huang, Q., Guan, Y., Miao, J. 2018. Hydrothermal synthesis and photoluminescence of host sensitized Yb2O3: Ho3+ nanorods. Materials Research Express, 6, 1.
  • [3] Henriques, M.S., Ferreiraac, A.C., Cruza, A., Ferreiraa, L.M., Brancoa, J.B., Brazdab, P., Jurekb, K., Storad, T., Gonçalvesa, A.P. 2015. Preparation of Yb2O3 submicron and nano materials via electrospinning. Ceramics International, 41, 10795–10802.
  • [4] Sohn, Y. 2018. Yb2O3 nanowires, nanorods and nano-square plates. Ceramics International, 44, 3341–3347.
  • [5] Unal, F., Kaya, F. 2020. Modelling of relation between synthesis parameters and average crystallite size of Yb2O3 nanoparticles using Box-Behnken design. Ceramics International, 46, 26800–26808.
  • [6] Suo, H., Guo, C., Li, L. 2015. Host sensitized spherical up-conversion phosphor Yb2O3:Er3+. Ceramics International, 41, 7017–7020.
  • [7] Zheng, Y., Lü, Q., Wang, J., Zhang, G., Gao, Y., Liu, Z. 2014. Emission behaviors of Yb2O3 nanoparticles pumped by 980 nm laser at different power densities. Optics & Laser Technology, 63, 39–44.
  • [8] Titov, A.A., Sokolova, N.P., Vorob’eva, M.V., Opolchenova, N.L., Eremenko, Z.V., Stepareva, N.N. 2009. Synthesis and microstructure of nanocrystalline Yb2O3 powders. Inorganic Materials, 45, 884–888.
  • [9] Wang, X., Li, Y., Zhou, Y., He, Y. 2019. Application of a novel endocrine disruptor bisphenol A electrochemical sensor based on analogous heterostructure characteristics of La-doped Yb2O3 nanomaterials. Analytical Methods, 11, 5613–5622.
  • [10] Liu, Z., Li, Z., Liu, J., Gu, S., Yuan, Q., Ren, J., Qu, X. 2012. Long-circulating Er3+-doped Yb2O3 up-conversion nanoparticle as an in vivo X-Ray CT imaging contrast agent. Biomaterials, 33, 6748–6757.
  • [11] Qian, C., Zeng, T., Liu, H. 2013. Synthesis and downconversion emission property of Yb2O3: Eu3+ nanosheets and nanotubes. Advances in Condensed Matter Physics, 519869.
  • [12] Yuan, F., Wang, J., Miao, H., Guo, C., Wang, W.G. 2012. Investigation of the crystal structure and ionic conductivity in the ternary system (Yb2O3)x–(Sc2O3)(0.11−x)–(ZrO2)0.89 (x=0–0.11). Journal of Alloys and Compounds, 549, 200–205.
  • [13] Chaudhary, S., Kumar, S., Chaudhary, G.R. 2019. Tuning of structural, optical and toxicological properties of Gd3+ doped Yb2O3 nanoparticles. Ceramics International, 45, 19307–19315.
  • [14] Unal, F., Kaya, F., Kazmanli, K. 2019. Effects of dopant rate and calcination parameters on photoluminescence emission of Y2O3 :Eu3+ phosphors : A statistical approach. Ceramics International, 45, 17818-17825.
  • [15] Li, X., Yang, Z., Guan, L., Guo, J., Wang, Y., Guo, Q. 2009. Synthesis and luminescent properties of CaMoO4:Tb3+, R+ (Li+, Na+, K+). Journal of Alloys and Compounds, 478, 684–686.
  • [16] Tsuboi, T., Kaczmarek, S.M., Boulon, G. 2004. Spectral properties of Yb3+ ions in LiNbO3 single crystals: Influences of other rare-earth ions, OH- ions, and γ-irradiation. Journal of Alloys and Compounds, 380, 196–200.
  • [17] Kumamoto, N., Nakauchi, D., Kato, T., Okada, G., Kawaguchi, N., Yanagida, T. 2017. Photoluminescence, scintillation and thermally-stimulated luminescence properties of Tb-doped 12CaO·7Al2O3 single crystals grown by FZ method. Journal of Rare Earths, 35, 957–963.
  • [18] Sotiriou, G.A., Franco, D., Poulikakos, D., Ferrari, A. 2012. Optically Stable Biocompatible Flame-Made SiO2-Coated Y2O3 :Tb3+ Nanophosphors for Cell Imaging. ACS Nano, 6, 3888–3897. [19] Gupta, A., Brahme, N., Bisen, D.P. 2014. Electroluminescence and photoluminescence of rare earth (Eu , Tb) doped Y2O3 nanophosphor. Journal of Luminescence, 155, 112–118.
  • [20] An, T., Benalloul, P., Barthou, C., Giang, L.T., Vu, N., Minh, L. 2007. Luminescence, energy transfer, and upconversion mechanisms of Y2O3 nanomaterials doped with Eu3+, Tb3+, Tm3+, Er3+, and Yb3+ ions. Journal of Nanomaterials, 48247.
  • [21] Muenchausen, R.E., Jacobsohn, L.G., Bennett, B.L., McKigney, E.A., Smith, J.F., Valdez, J.A., Cooke, D.W. 2007. Effects of Tb doping on the photoluminescence of Y2O3:Tb nanophosphors. Journal of Luminescence, 126, 838–842.
  • [22] Tu, D., Liang, Y., Liu, R., Li, D. 2011. Eu/Tb ions co-doped white light luminescence Y2O3 phosphors. Journal of Luminescence, 131, 2569–2573.
Year 2021, , 1031 - 1036, 30.08.2021
https://doi.org/10.16984/saufenbilder.895402

Abstract

References

  • [1] Kumar, S., Chaudhary, S., Chaudhary, G.R. 2020. Modulating physicochemical properties in Gd3+@Yb2O3 nanospheres for efficient electrochemical monitoring of H2O2. Materials Science and Engineering C, 114, 111059.
  • [2] Yang, J., Shen, J., Huang, Q., Guan, Y., Miao, J. 2018. Hydrothermal synthesis and photoluminescence of host sensitized Yb2O3: Ho3+ nanorods. Materials Research Express, 6, 1.
  • [3] Henriques, M.S., Ferreiraac, A.C., Cruza, A., Ferreiraa, L.M., Brancoa, J.B., Brazdab, P., Jurekb, K., Storad, T., Gonçalvesa, A.P. 2015. Preparation of Yb2O3 submicron and nano materials via electrospinning. Ceramics International, 41, 10795–10802.
  • [4] Sohn, Y. 2018. Yb2O3 nanowires, nanorods and nano-square plates. Ceramics International, 44, 3341–3347.
  • [5] Unal, F., Kaya, F. 2020. Modelling of relation between synthesis parameters and average crystallite size of Yb2O3 nanoparticles using Box-Behnken design. Ceramics International, 46, 26800–26808.
  • [6] Suo, H., Guo, C., Li, L. 2015. Host sensitized spherical up-conversion phosphor Yb2O3:Er3+. Ceramics International, 41, 7017–7020.
  • [7] Zheng, Y., Lü, Q., Wang, J., Zhang, G., Gao, Y., Liu, Z. 2014. Emission behaviors of Yb2O3 nanoparticles pumped by 980 nm laser at different power densities. Optics & Laser Technology, 63, 39–44.
  • [8] Titov, A.A., Sokolova, N.P., Vorob’eva, M.V., Opolchenova, N.L., Eremenko, Z.V., Stepareva, N.N. 2009. Synthesis and microstructure of nanocrystalline Yb2O3 powders. Inorganic Materials, 45, 884–888.
  • [9] Wang, X., Li, Y., Zhou, Y., He, Y. 2019. Application of a novel endocrine disruptor bisphenol A electrochemical sensor based on analogous heterostructure characteristics of La-doped Yb2O3 nanomaterials. Analytical Methods, 11, 5613–5622.
  • [10] Liu, Z., Li, Z., Liu, J., Gu, S., Yuan, Q., Ren, J., Qu, X. 2012. Long-circulating Er3+-doped Yb2O3 up-conversion nanoparticle as an in vivo X-Ray CT imaging contrast agent. Biomaterials, 33, 6748–6757.
  • [11] Qian, C., Zeng, T., Liu, H. 2013. Synthesis and downconversion emission property of Yb2O3: Eu3+ nanosheets and nanotubes. Advances in Condensed Matter Physics, 519869.
  • [12] Yuan, F., Wang, J., Miao, H., Guo, C., Wang, W.G. 2012. Investigation of the crystal structure and ionic conductivity in the ternary system (Yb2O3)x–(Sc2O3)(0.11−x)–(ZrO2)0.89 (x=0–0.11). Journal of Alloys and Compounds, 549, 200–205.
  • [13] Chaudhary, S., Kumar, S., Chaudhary, G.R. 2019. Tuning of structural, optical and toxicological properties of Gd3+ doped Yb2O3 nanoparticles. Ceramics International, 45, 19307–19315.
  • [14] Unal, F., Kaya, F., Kazmanli, K. 2019. Effects of dopant rate and calcination parameters on photoluminescence emission of Y2O3 :Eu3+ phosphors : A statistical approach. Ceramics International, 45, 17818-17825.
  • [15] Li, X., Yang, Z., Guan, L., Guo, J., Wang, Y., Guo, Q. 2009. Synthesis and luminescent properties of CaMoO4:Tb3+, R+ (Li+, Na+, K+). Journal of Alloys and Compounds, 478, 684–686.
  • [16] Tsuboi, T., Kaczmarek, S.M., Boulon, G. 2004. Spectral properties of Yb3+ ions in LiNbO3 single crystals: Influences of other rare-earth ions, OH- ions, and γ-irradiation. Journal of Alloys and Compounds, 380, 196–200.
  • [17] Kumamoto, N., Nakauchi, D., Kato, T., Okada, G., Kawaguchi, N., Yanagida, T. 2017. Photoluminescence, scintillation and thermally-stimulated luminescence properties of Tb-doped 12CaO·7Al2O3 single crystals grown by FZ method. Journal of Rare Earths, 35, 957–963.
  • [18] Sotiriou, G.A., Franco, D., Poulikakos, D., Ferrari, A. 2012. Optically Stable Biocompatible Flame-Made SiO2-Coated Y2O3 :Tb3+ Nanophosphors for Cell Imaging. ACS Nano, 6, 3888–3897. [19] Gupta, A., Brahme, N., Bisen, D.P. 2014. Electroluminescence and photoluminescence of rare earth (Eu , Tb) doped Y2O3 nanophosphor. Journal of Luminescence, 155, 112–118.
  • [20] An, T., Benalloul, P., Barthou, C., Giang, L.T., Vu, N., Minh, L. 2007. Luminescence, energy transfer, and upconversion mechanisms of Y2O3 nanomaterials doped with Eu3+, Tb3+, Tm3+, Er3+, and Yb3+ ions. Journal of Nanomaterials, 48247.
  • [21] Muenchausen, R.E., Jacobsohn, L.G., Bennett, B.L., McKigney, E.A., Smith, J.F., Valdez, J.A., Cooke, D.W. 2007. Effects of Tb doping on the photoluminescence of Y2O3:Tb nanophosphors. Journal of Luminescence, 126, 838–842.
  • [22] Tu, D., Liang, Y., Liu, R., Li, D. 2011. Eu/Tb ions co-doped white light luminescence Y2O3 phosphors. Journal of Luminescence, 131, 2569–2573.
There are 21 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Fatma Unal 0000-0003-4476-2544

Publication Date August 30, 2021
Submission Date March 11, 2021
Acceptance Date July 7, 2021
Published in Issue Year 2021

Cite

APA Unal, F. (2021). Photoluminescence Investigation of Tb Doped Yb2O3 Phosphors Produced by Precipitation Method. Sakarya University Journal of Science, 25(4), 1031-1036. https://doi.org/10.16984/saufenbilder.895402
AMA Unal F. Photoluminescence Investigation of Tb Doped Yb2O3 Phosphors Produced by Precipitation Method. SAUJS. August 2021;25(4):1031-1036. doi:10.16984/saufenbilder.895402
Chicago Unal, Fatma. “Photoluminescence Investigation of Tb Doped Yb2O3 Phosphors Produced by Precipitation Method”. Sakarya University Journal of Science 25, no. 4 (August 2021): 1031-36. https://doi.org/10.16984/saufenbilder.895402.
EndNote Unal F (August 1, 2021) Photoluminescence Investigation of Tb Doped Yb2O3 Phosphors Produced by Precipitation Method. Sakarya University Journal of Science 25 4 1031–1036.
IEEE F. Unal, “Photoluminescence Investigation of Tb Doped Yb2O3 Phosphors Produced by Precipitation Method”, SAUJS, vol. 25, no. 4, pp. 1031–1036, 2021, doi: 10.16984/saufenbilder.895402.
ISNAD Unal, Fatma. “Photoluminescence Investigation of Tb Doped Yb2O3 Phosphors Produced by Precipitation Method”. Sakarya University Journal of Science 25/4 (August 2021), 1031-1036. https://doi.org/10.16984/saufenbilder.895402.
JAMA Unal F. Photoluminescence Investigation of Tb Doped Yb2O3 Phosphors Produced by Precipitation Method. SAUJS. 2021;25:1031–1036.
MLA Unal, Fatma. “Photoluminescence Investigation of Tb Doped Yb2O3 Phosphors Produced by Precipitation Method”. Sakarya University Journal of Science, vol. 25, no. 4, 2021, pp. 1031-6, doi:10.16984/saufenbilder.895402.
Vancouver Unal F. Photoluminescence Investigation of Tb Doped Yb2O3 Phosphors Produced by Precipitation Method. SAUJS. 2021;25(4):1031-6.