Research Article
BibTex RIS Cite

Kimyasal Modifiye Nar Kabuğu ile Anyonik Boyanın Biyosorpsiyonu: Modifikasyonun Uzaklaştırma Verimliliği Üzerine Etkisi

Year 2023, , 157 - 169, 22.06.2023
https://doi.org/10.29233/sdufeffd.1177739

Abstract

Su kirliliğinin kontrolü son yıllarda artan bir önem kazanmıştır. Boyaların çevreye salınması su kirliliğinin sadece küçük bir bölümünü oluşturur. Bu çalışmada, sulu ortamdan Reaktif Siyah 5 (RS5) boyasının giderimi için tarımsal atık olan nar kabukları (Punica granatum L., PGL) biyosorban olarak kullanılmış ve biyosorpsiyon kapasitesini arttırmak amacıyla hekzametilendiamin (HMDA) ile kimyasal olarak modifiye edilmiştir. RS5 biyosorpsiyonu pH, etkileşim zamanı ve sıcaklığa bağlı olarak incelenmiş; bunun yanı sıra, deneysel veriler kullanılarak biyosorpsiyonun kinetik ve izoterm verileri çıkartılmıştır. Biyosorpsiyonun kinetik ve izoterm modellemesiyle deneysel verilerin yalancı-ikinci-derece kinetik ve Langmuir izotermine modellerine uygunluk gösterdiği belirlenmiştir. Sıcaklık artışı ile biyosorpsiyon kapasitesi artmış ve 40 °C’de PGL için 54,64 mg/g, HMDA@PGL için 161,3 mg/g olarak bulunmuştur. Biyosorbanların potansiyel performansını değerlendirmek için hazırlanan sentetik atık su ile yapılan çalışmalarda biyosorpsiyonda önemli bir matris etkisinin gözlemlenmediğini tespit edilmiştir. Elde edilen sonuçlara göre RS5 giderimi için HMDA@PGL biyosorbanının PGL’ye göre daha etkin bir biyosorban olduğu bulunmuştur.

Supporting Institution

Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri

Project Number

2014/13

References

  • N. Mikosch, R. Becker, L. Schelter, M. Berger, M. Usman, and M. Finkbeiner, “High resolution water scarcity analysis for cotton cultivation areas in Punjab, Pakistan,” Ecol. Indic. 109, 105852, 2020.
  • A. R. C. Richa, “Synthesis of a novel gellan-pullulan nanogel and its application in adsorption of cationic dye from aqueous medium,” Carbohydr. Polym. 227, 115291, 2020.
  • V. K. Gupta, R. Jain, S. Varshney, and V. K. Saini, “Removal of Reactofix Navy Blue 2 GFN from aqueous solutions using adsorption techniques,” J. Colloid Interface Sci. 307, 326–332, 2007.
  • C. I. Pearce, J. R. Lloyd, and J. T. Guthrie, “The removal of colour from textile wastewater using whole bacterial cells: a review,” Dye. Pigment. 58, 179–196, 2003.
  • R. Bushra, S. Mohamad, Y. Alias, Y. Jin, and M. Ahmad, “Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: A review,” Microporous Mesoporous Mater. 319, 111040, 2021.
  • M. Jain, V. K. Garg, and K. Kadirvelu, “Equilibrium and kinetic studies for sequestration of Cr(VI) from simulated wastewater using sunflower waste biomass,” J. Hazard. Mater. 171, 328–334, 2009.
  • D. Shen, J. Fan, W. Zhou, B. Gao, Q. Yue, and Q. Kang, “Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems,” J. Hazard. Mater. 172, 99–107, 2009.
  • A. Azari, M. Noorisepehr, E. Dehganifard, K. Karimyan, S. Y. Hashemi, E. M. Kalhori, R. Norouzi, S. Agarwal, and V. K. Gupta, “Experimental design, modeling and mechanism of cationic dyes biosorption on to magnetic chitosan-lutaraldehyde composite,” Int. J. Biol. Macromol. 131, 633–645, 2019.
  • R. Vinu and G. Madras, “Kinetics of Sonophotocatalytic Degradation of Anionic Dyes with Nano-TiO 2,” Environ. Sci. Technol. 43, 473–479, 2009.
  • V. K. Gupta and Suhas, “Application of low-cost adsorbents for dye removal - A review,” J. Environ. Manage. 90, 2313–2342, 2009.
  • O. Sakin Omer, M. A. Hussein, B. H. M. Hussein, and A. Mgaidi, “Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K,” Arab. J. Chem. 11, 615–623, 2018.
  • M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim, and A. Idris, “Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review,” Desalination 280, 1–13, 2011.
  • K. Vijayaraghavan and Y. S. Yun, “Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp.,” Dye. Pigment. 76, 726–732, 2008.
  • T. Robinson, G. McMullan, R. Marchant, and P. Nigam, “Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative,” Bioresour. Technol. 77, 247–255, 2001.
  • A. H. Jawad, A. M. Kadhum, and Y. S. Ngoh, “Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies,” Desalin. WATER Treat. 109, 231–240, 2018.
  • M. T. Sulak, E. Demirbas, and M. Kobya, “Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran,” Bioresour. Technol. 98, 2590–2598, 2007.
  • M. A. Ahmad, M. A. Eusoff, P. O. Oladoye, K. A. Adegoke, and O. S. Bello, “Statistical optimization of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from pomegranate fruit peel,” Chem. Data Collect. 28, 100426, 2020.
  • A. Machrouhi, H. Alilou, M. Farnane, S. El Hamidi, M. Sadiq, M. Abdennouri, H. Tounsadi, and N. Barka, “Statistical optimization of activated carbon from Thapsia transtagana stems and dyes removal efficiency using central composite design,” J. Sci. Adv. Mater. Devices 4, 544–553, 2019.
  • K. Samal, N. Raj, and K. Mohanty, “Saponin extracted waste biomass of Sapindus mukorossi for adsorption of methyl violet dye in aqueous system,” Surfaces and Interfaces 14, 166–174, 2019.
  • M. Ngabura, S. A. Hussain, W. A. W. A. Ghani, M. S. Jami, and Y. P. Tan, “Utilization of renewable durian peels for biosorption of zinc from wastewater,” J. Environ. Chem. Eng. 6, 2528–2539, 2018.
  • G. Ungureanu, S. C. R. Santos, I. Volf, R. A. R. Boaventura, and C. M. S. Botelho, “Biosorption of antimony oxyanions by brown seaweeds: Batch and column studies,” J. Environ. Chem. Eng. 5, 3463–3471, 2017.
  • A. M. Elgarahy, K. Z. Elwakeel, S. H. Mohammad, and G. A. Elshoubaky, “A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process,” Clean. Eng. Technol. 4, 100209, 2021.
  • F. Fu and Q. Wang, “Removal of heavy metal ions from wastewaters: A review,” J. Environ. Manage. 92, 407–418, 2011.
  • P. M. Fernández, S. C. Viñarta, A. R. Bernal, E. L. Cruz, and L. I. C. Figueroa, “Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives,” Chemosphere 208, 139–148, 2018.
  • S. T. Akar, A. S. Özcan, T. Akar, A. Özcan, and Z. Kaynak, “Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste,” Desalination 249, 757–761, 2009.
  • H. Kurt and G. Şahin, “Bir ziraat coğrafyası çalışması: Türkiye’de nar (punica granatum L.) tarımı,” Marmara Coğrafya Dergisi, 27,551–574, 2013.
  • A. İkinci, İ. Bolat, and M. Şİmşek, “International Pomegranate Trade and Pomegranate Standard,” 1. Internatıonal GAP Agrıculture Lıvestock Congr. 607-613,2018.
  • TÜİK 2022, <https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022-45504>. Erişim tarihi: 18.04.2023
  • Ç. Ay, A. S. Özcan, Y. Erdoğan, and A. Özcan, “Characterization and lead(II) ions removal of modified Punica granatum L. peels,” Int. J. Phytoremediation 19, 327–339, 2017.
  • Ç. Ömeroĝlu Ay, A. S. Özcan, Y. Erdoĝan, and A. Özcan, “Characterization of Punica granatum L. peels and quantitatively determination of its biosorption behavior towards lead(II) ions and Acid Blue 40,” Colloids Surfaces B Biointerfaces 100, 197–204, 2012.
  • K. C. Lai, L. Y. Lee, B. Y. Z. Hiew, T. C. K. Yang, G. T. Pan, S. Thangalazhy-Gopakumar, and S. Gan, “Utilisation of eco-friendly and low cost 3D graphene-based composite for treatment of aqueous Reactive Black 5 dye: Characterisation, adsorption mechanism and recyclability studies,” J. Taiwan Inst. Chem. Eng. 114, 57–66, 2020.
  • L. Ai, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng, and J. Jiang, “Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis,” J. Hazard. Mater. 198, 282–290, 2011.
  • J. F. Osma, V. Saravia, J. L. Toca-Herrera, and S. R. Couto, “Sunflower seed shells: A novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions,” J. Hazard. Mater. 147, 900–905, 2007.
  • Ö. Tunç, H. Tanaci, and Z. Aksu, “Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye,” J. Hazard. Mater. 163, 187–198, 2009.
  • D. Uçar and B. Armağan, “The Removal of Reactive Black 5 from Aqueous Solutions by Cotton Seed Shell,” Water Environ. Res. 84, 323–327, 2012.
  • S. Tunali Akar, F. Sayin, I. Ozdemir, and D. Tunc, “A Natural Montmorillonite-Based Magsorbent as an Effective Scavenger for Cadmium Contamination,” Water. Air. Soil Pollut. 231 Water, Air, & Soil Pollution, 2020.
  • S. Lagergren, “Zur theorie der sogenannten adsorption geloster stoffe,” K. Sven. Vetenskapsakademiens, Handl. 24, 1–39, 1898.
  • Y. . Ho and G. McKay, “Pseudo-second order model for sorption processes,” Process Biochem. 34, 451–465, 1999.
  • W. j. Weber, “Physicochemical Processes: For Water Quality Control,” WILEY Intersci. 9, 261–304, 1972.
  • I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum,” J. Am. Chem. Soc. 40, 1361–1403, 1918.
  • H. Freundlich, “Über die absorption in lösungen.,” Über Die Adsorpt. Lösungen, 385–470, 1906.
  • K. R. Hall, L. C. Eagleton, A. Acrivos, and T. Vermeulen, “Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions,” Ind. Eng. Chem. Fundam. 5, 212–223, 1966.

Biosorption of an Anionic Dye onto Chemically Modified Pomegranate Peel: Effect of Modification on Removal Efficiency

Year 2023, , 157 - 169, 22.06.2023
https://doi.org/10.29233/sdufeffd.1177739

Abstract

Control of water pollution has gained increasing importance in recent years. Released dyes into the environment account for only a small part of water pollution. In this study, agricultural waste pomegranate peels (Punica granatum L., PGL) were used as biosorbent for the removal of Reactive Black 5 (RS5) dye from aqueous media, and hexamethylenediamine (HMDA) was chemically modified to increase its biosorption capacity. Reactive Black 5 (RS5) biosorption was investigated depending on pH, interaction time, and temperature; kinetic and isotherm biosorption data were extracted using experimental data. The biosorption kinetic and isotherm modeling determined that the experimental data conformed to the pseudo-second-order kinetic and Langmuir isotherm models. The biosorption capacity increased with the increase in temperature, and it was found to be 54.64 mg/g for PGL and 161.3 mg/g for HMDA@PGL. In studies with synthetic wastewater prepared to evaluate the potential performance of biosorbents, it was determined that no significant matrix effect was observed in biosorption. According to the results, HMDA@PGL biosorbent was a more effective biosorbent than PGL for RS5 removal.

Project Number

2014/13

References

  • N. Mikosch, R. Becker, L. Schelter, M. Berger, M. Usman, and M. Finkbeiner, “High resolution water scarcity analysis for cotton cultivation areas in Punjab, Pakistan,” Ecol. Indic. 109, 105852, 2020.
  • A. R. C. Richa, “Synthesis of a novel gellan-pullulan nanogel and its application in adsorption of cationic dye from aqueous medium,” Carbohydr. Polym. 227, 115291, 2020.
  • V. K. Gupta, R. Jain, S. Varshney, and V. K. Saini, “Removal of Reactofix Navy Blue 2 GFN from aqueous solutions using adsorption techniques,” J. Colloid Interface Sci. 307, 326–332, 2007.
  • C. I. Pearce, J. R. Lloyd, and J. T. Guthrie, “The removal of colour from textile wastewater using whole bacterial cells: a review,” Dye. Pigment. 58, 179–196, 2003.
  • R. Bushra, S. Mohamad, Y. Alias, Y. Jin, and M. Ahmad, “Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: A review,” Microporous Mesoporous Mater. 319, 111040, 2021.
  • M. Jain, V. K. Garg, and K. Kadirvelu, “Equilibrium and kinetic studies for sequestration of Cr(VI) from simulated wastewater using sunflower waste biomass,” J. Hazard. Mater. 171, 328–334, 2009.
  • D. Shen, J. Fan, W. Zhou, B. Gao, Q. Yue, and Q. Kang, “Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems,” J. Hazard. Mater. 172, 99–107, 2009.
  • A. Azari, M. Noorisepehr, E. Dehganifard, K. Karimyan, S. Y. Hashemi, E. M. Kalhori, R. Norouzi, S. Agarwal, and V. K. Gupta, “Experimental design, modeling and mechanism of cationic dyes biosorption on to magnetic chitosan-lutaraldehyde composite,” Int. J. Biol. Macromol. 131, 633–645, 2019.
  • R. Vinu and G. Madras, “Kinetics of Sonophotocatalytic Degradation of Anionic Dyes with Nano-TiO 2,” Environ. Sci. Technol. 43, 473–479, 2009.
  • V. K. Gupta and Suhas, “Application of low-cost adsorbents for dye removal - A review,” J. Environ. Manage. 90, 2313–2342, 2009.
  • O. Sakin Omer, M. A. Hussein, B. H. M. Hussein, and A. Mgaidi, “Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K,” Arab. J. Chem. 11, 615–623, 2018.
  • M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim, and A. Idris, “Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review,” Desalination 280, 1–13, 2011.
  • K. Vijayaraghavan and Y. S. Yun, “Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp.,” Dye. Pigment. 76, 726–732, 2008.
  • T. Robinson, G. McMullan, R. Marchant, and P. Nigam, “Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative,” Bioresour. Technol. 77, 247–255, 2001.
  • A. H. Jawad, A. M. Kadhum, and Y. S. Ngoh, “Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies,” Desalin. WATER Treat. 109, 231–240, 2018.
  • M. T. Sulak, E. Demirbas, and M. Kobya, “Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran,” Bioresour. Technol. 98, 2590–2598, 2007.
  • M. A. Ahmad, M. A. Eusoff, P. O. Oladoye, K. A. Adegoke, and O. S. Bello, “Statistical optimization of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from pomegranate fruit peel,” Chem. Data Collect. 28, 100426, 2020.
  • A. Machrouhi, H. Alilou, M. Farnane, S. El Hamidi, M. Sadiq, M. Abdennouri, H. Tounsadi, and N. Barka, “Statistical optimization of activated carbon from Thapsia transtagana stems and dyes removal efficiency using central composite design,” J. Sci. Adv. Mater. Devices 4, 544–553, 2019.
  • K. Samal, N. Raj, and K. Mohanty, “Saponin extracted waste biomass of Sapindus mukorossi for adsorption of methyl violet dye in aqueous system,” Surfaces and Interfaces 14, 166–174, 2019.
  • M. Ngabura, S. A. Hussain, W. A. W. A. Ghani, M. S. Jami, and Y. P. Tan, “Utilization of renewable durian peels for biosorption of zinc from wastewater,” J. Environ. Chem. Eng. 6, 2528–2539, 2018.
  • G. Ungureanu, S. C. R. Santos, I. Volf, R. A. R. Boaventura, and C. M. S. Botelho, “Biosorption of antimony oxyanions by brown seaweeds: Batch and column studies,” J. Environ. Chem. Eng. 5, 3463–3471, 2017.
  • A. M. Elgarahy, K. Z. Elwakeel, S. H. Mohammad, and G. A. Elshoubaky, “A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process,” Clean. Eng. Technol. 4, 100209, 2021.
  • F. Fu and Q. Wang, “Removal of heavy metal ions from wastewaters: A review,” J. Environ. Manage. 92, 407–418, 2011.
  • P. M. Fernández, S. C. Viñarta, A. R. Bernal, E. L. Cruz, and L. I. C. Figueroa, “Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives,” Chemosphere 208, 139–148, 2018.
  • S. T. Akar, A. S. Özcan, T. Akar, A. Özcan, and Z. Kaynak, “Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste,” Desalination 249, 757–761, 2009.
  • H. Kurt and G. Şahin, “Bir ziraat coğrafyası çalışması: Türkiye’de nar (punica granatum L.) tarımı,” Marmara Coğrafya Dergisi, 27,551–574, 2013.
  • A. İkinci, İ. Bolat, and M. Şİmşek, “International Pomegranate Trade and Pomegranate Standard,” 1. Internatıonal GAP Agrıculture Lıvestock Congr. 607-613,2018.
  • TÜİK 2022, <https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022-45504>. Erişim tarihi: 18.04.2023
  • Ç. Ay, A. S. Özcan, Y. Erdoğan, and A. Özcan, “Characterization and lead(II) ions removal of modified Punica granatum L. peels,” Int. J. Phytoremediation 19, 327–339, 2017.
  • Ç. Ömeroĝlu Ay, A. S. Özcan, Y. Erdoĝan, and A. Özcan, “Characterization of Punica granatum L. peels and quantitatively determination of its biosorption behavior towards lead(II) ions and Acid Blue 40,” Colloids Surfaces B Biointerfaces 100, 197–204, 2012.
  • K. C. Lai, L. Y. Lee, B. Y. Z. Hiew, T. C. K. Yang, G. T. Pan, S. Thangalazhy-Gopakumar, and S. Gan, “Utilisation of eco-friendly and low cost 3D graphene-based composite for treatment of aqueous Reactive Black 5 dye: Characterisation, adsorption mechanism and recyclability studies,” J. Taiwan Inst. Chem. Eng. 114, 57–66, 2020.
  • L. Ai, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng, and J. Jiang, “Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis,” J. Hazard. Mater. 198, 282–290, 2011.
  • J. F. Osma, V. Saravia, J. L. Toca-Herrera, and S. R. Couto, “Sunflower seed shells: A novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions,” J. Hazard. Mater. 147, 900–905, 2007.
  • Ö. Tunç, H. Tanaci, and Z. Aksu, “Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye,” J. Hazard. Mater. 163, 187–198, 2009.
  • D. Uçar and B. Armağan, “The Removal of Reactive Black 5 from Aqueous Solutions by Cotton Seed Shell,” Water Environ. Res. 84, 323–327, 2012.
  • S. Tunali Akar, F. Sayin, I. Ozdemir, and D. Tunc, “A Natural Montmorillonite-Based Magsorbent as an Effective Scavenger for Cadmium Contamination,” Water. Air. Soil Pollut. 231 Water, Air, & Soil Pollution, 2020.
  • S. Lagergren, “Zur theorie der sogenannten adsorption geloster stoffe,” K. Sven. Vetenskapsakademiens, Handl. 24, 1–39, 1898.
  • Y. . Ho and G. McKay, “Pseudo-second order model for sorption processes,” Process Biochem. 34, 451–465, 1999.
  • W. j. Weber, “Physicochemical Processes: For Water Quality Control,” WILEY Intersci. 9, 261–304, 1972.
  • I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum,” J. Am. Chem. Soc. 40, 1361–1403, 1918.
  • H. Freundlich, “Über die absorption in lösungen.,” Über Die Adsorpt. Lösungen, 385–470, 1906.
  • K. R. Hall, L. C. Eagleton, A. Acrivos, and T. Vermeulen, “Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions,” Ind. Eng. Chem. Fundam. 5, 212–223, 1966.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Makaleler
Authors

Çiğdem Ay 0000-0002-8283-0678

Project Number 2014/13
Publication Date June 22, 2023
Published in Issue Year 2023

Cite

IEEE Ç. Ay, “Kimyasal Modifiye Nar Kabuğu ile Anyonik Boyanın Biyosorpsiyonu: Modifikasyonun Uzaklaştırma Verimliliği Üzerine Etkisi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 18, no. 2, pp. 157–169, 2023, doi: 10.29233/sdufeffd.1177739.