Research Article
BibTex RIS Cite

Investigation of (n,2n) and (n,p) Reaction Cross Sections of Ir-191 and Ir-193 Isotopes

Year 2023, , 50 - 61, 22.06.2023
https://doi.org/10.29233/sdufeffd.1206635

Abstract

The nuclear data for neutron induced reactions up to 20.0 MeV is used in many different fields such as nuclear physics, astrophysics, and medicine. In this study, cross-section calculations for (n,2n), (n,p) and (n,a) reactions of iridium isotopes (191,193Ir) have been calculated using different level density models up to 20,0 MeV. The ALICE-ASH, EMPIRE-3.2 and TALYS-1.95 nuclear codes were used in model calculations. The Fermi Gas Model in ALICE-ASH, The Generalized Superfluid Level Density Model in EMPIRE-3.2 and the Constant Temperature Fermi Gas Level Density Model in TALYS-1.95 code have been selected. The results have been discussed and compared with the experimental data found in literature and with different evaluated nuclear data (ENDFB-VIII.0, JEFF-3.3 and JENDL-2017). It is believed that the results will make important contributions to the development of future cross-section studies.

References

  • A. Gilbert and A. G. W. Cameron, “A composite nuclear level density formula with shell correction,” Can. J. of Phys., 43 (8),1446-1496, 1965.
  • V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, “Phenomenological description of energy dependence of the level density parameter,” Sov. J. Nucl. Phys. (Yad. Fiz., v.), 21 (3), 485-490, 1975.
  • A. V. Ignatyuk, K. K. Istekov, and G. N. Smirenkin, “The role of collective effects in the systematics of nuclear level densities,” Sov. J. Nucl. Phys, 29 (4), 450, 1979.
  • S. K. Kataria, V. S. Ramamurthy, and S. S. Kapoor, “Semiempirical nuclear level density formula with shell effects,” Phys. Rev. C, 18, 549, 1978.
  • C. H. M. Broeders, A. Yu. Konobeyev, Yu. A. Korovin, V. P. Lunev, and M. Blann, “Report FZKA 7183,” http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf, 2006.
  • M. Şahan, E. Tel, A. Aydın, and İ. Yegingil, “Investigation of some stellar iron group fusion materials for (n, p) reactions,” J. Fusion. Energ., 31, 52-64, 2012.
  • T. Wang, G. Kim, Y. D. Oh, M. H. Cho, and I. S. Ko, W. “Namkung, neutron total cross sections and resonance parameters of palladium,” Nucl. Sci. Eng., 183, 286-297, 2016.
  • M. Yiğit and A. Kara, “Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64,6668Zn targets,” Nucl. Sci. Eng., 49, 996-1005, 2017.
  • M. Yiğit, “A review of (n,p) and (n,α) nuclear cross sections on palladium nuclei using different level density models and empirical formulas,” Appl. Radiat. Isotopes, 140: 355–362, 2018.
  • I. Pasha, B. Rudraswamy, S. V. Suryanarayana, H. Naik, S. P. Ram, L.S. Danu, T. Patel, S. Bishnoi, and M. P. Karantha, “Measurement of neutron induced reaction cross sections of palladium isotopes at the neutron energy of 14.54 +/- 0.24 MeV with covariance analysis,” J. Radioanal. Nucl. Ch., 325(2): 175-182, 2020.
  • A. Kaplan, M. Şekerci, V. Çapalı, and H. Özdoğan, “Photon Induced Reaction Cross-Section Calculations of Several, Structural Fusion Materials,” J. Fusion. Energ., 36, 213–217, 2017.
  • A. Kaplan, H. Özdoğan, A. Aydın, and E. Tel, “(,2n) Reaction Cross Section Calculations on Several Structural Fusion Materials,” J. Fusion. Energ., 32, 431–436, 2013.
  • A. Kaplan, H. Özdoğan, A. Aydın, and E. Tel, “Deuteron-induced cross section calculations of some structural fusion materials,” J. Fusion. Energ., 32, 97–102, 2013.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “Level density model effects on the production cross-section calculations of some medical isotopes via (α, xn) reactions where x = 1–3,” Mod. Phys. Lett. A, 35, 24, 2050202, 2020.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,γ) reactions,” Radiochim. Acta, 105, 1, 2019.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “Investigation on the different production routes of 67Ga radioisotope by using different level density models,” Biophysics and Medical Physics, 74, 277–281, 2019.
  • M. Yiğit, “Analysis of cross sections of (n,t) nuclear reaction using different empirical formulae and level density models,” Appl. Radiat. Isotopes, 139, September 2018, Pages 151-158
  • A. Kaplan, E. Tel, and A. Aydin, “The equilibrium and preequilibrium neutron-emission spectra of some structural fusion materials for (n, xn) reactions up to 16 MeV energy,” Phys. Atom. Nucl+,, 72, 6, 903–910, 2009.
  • H. Özdoğan, M. Şekerci, İ. H. Sarpun, and A. Kaplan, “Investigation of level density parameter effects on (p,n) and (p,2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr,” Appl. Radiat. Isotopes, 140, 29-34, 2018.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “Investigation of gamma strength functions and level density models effects on photon induced reaction cross–section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu,” Appl. Radiat. Isotopes, 143, 6-10, 2019.
  • M. Blann, “ALICE-91, Statistical model code system with fission competition”, RSIC Code Package PSR-146, Lawrence Livermore National Laboratory, California, USA, 1991.
  • R. Capote, V. Osorio, R. Lopez, E. Herrera, and M. R. Piris, “PCROSS program code” (Higher Institute of Nuclear Science and Technology, Cuba, 1991); Translated by the IAEA on the March 1991.
  • H. Sahan, M. Sahan, and E. Tel, “Cross-Section Calculation of (n, p) and (n, 2n) reactions for high temperature reactors construction materials tungsten and rhenium,” Phys. Atom. Nucl+, 84 (5), 724–738, 2021.
  • E. Tel, M. H. Bölükdemir, S. Okuducu, A. Aydın, and A. Kaplan, “Investigation of neutron skin effect, with density dependence by using a new calculation method for initial exciton numbers on pre-equilibrium reactions,” Phys. Scripta, 80, 065201, 2009.
  • A. J. Koning and J. P. Delaroche, “Local and global nucleon optical models from 1 keV to 200.0 MeV”, Nuclear Physics A, 713 (3-4), 231–310, 2003.
  • C. Kalbach, “Preequilibrium reactions with complex particle channels,” Phys. Rev. C, 71, 034606, 2005.
  • M. Sahan, E. Tel, H. Sahan, U. Gevher, and A. Kara, “Cross section calculations of (n,2n) and (n,p) nuclear reactions on germanium isotopes at 14–15 MeV,” J. Fusion. Energ., 35:730–742, 2016.
  • A. Koning, S. Hilaire, and S. Goriely, “User Manuel TALYS-1.95, A nuclear reaction program,” new edition- 24 december 2019 ed. http://www.talys.eu/download-talys/, 2019.
  • J. Luo, F. Tuo, and X. Kong, “Activation cross sections and isomeric cross section ratios for 184Os(n,2n)183m,gOs, 190Os(n,p)190m,gRe and 86Sr(n,2n)85m,gSr reactions from 13.5 to 14.8 MeV,” J. Radioanal. Nucl. Ch., 279 (2), 443–454, 2009.
  • C. K. Cline, “Extensions to the pre-equilibrium statistical model and a study of complex particle emission,” Nucl. Phys. A, 193, 417, 1972.
  • I. Ribansky, P. Oblozinsky, and E. Betak, “Pre-equilibrium decay and the exciton model,” Nucl. Phys. A, 205, 545-560, 1973.
  • M. Herman, R. Capote, M. Sin, A. Trkov, B. Carlson, D. Brown, G. Nobre, P. Oblozinsky, C. Mattoon, H. Wienke, S. Hoblit, Y. S. Cho, V. Plujko, and V. Zerkin, “EMPIRE-3.2 Malta modular system for nuclear reaction calculations and nuclear data evaluation,” User's Manual, 2013.
  • A. J. Koning and J. P. Delaroche, “Local and global nucleon optical models from 1 keV to 200.0 MeV,” Nucl. Phys. A, 713 (3-4), 231–310, 2003.
  • V. F. Weisskopf and D. H. Ewing, “On the yield of nuclear reactions with heavy elements,” Phys. Rev., 57, 472, 1940.
  • M. Blann and H. K. Vonach, “Global test of modified precompound decay models,” Phys. Rev., 28 (4), 1475-1492, 1983.
  • W. Hauser and H. Feshbach, “Inelastic scattering of neutrons,” Phys. Rev. C, 87, 366, 1952.
  • N. Patronis, C. T. Papadopoulos, S. Galanopoulos, M. Kokkoris, G. Perdikakis, R. Vlastou, A. Lagoyannis, and S. Harissopulos, “Activation cross section and isomeric cross-section ratio for the (n,2n) reaction on 191-Ir,” Phys. Rev. C, 75, 2007.
  • M. Herman, A. Marcinkowski, and K. Stankiewicz, “Statistical multi-step compound emission in (n,2n) reactions,” Nucl. Phys. A, 430 (1), 19, 69-83, 1984.
  • B. P. Bayhurst, J. S. Gilmore, R. J. Prestwood, J. B. Wilhelmy, N. Jarmie, B. H. Erkkila, and R. A. Hardekopf, “Cross sections for (n,xn) reactions between 7.5 and 28 MeV,” Phys. Rev. C, 12 (2), 451.
  • A. A. Filatenkov, Neutron activation cross sections measured at KRI in neutron energy region 13.4 - 14.9 MeV”, USSR report to the INDC. No. 0460, Austria, 2016.
  • C. Konno, Y. Ikeda, K. Osihi, K. Kawede, H. Yamomoto, and H. Maekawa, “JAERI- Reports”, No. 1329, Japan Atomic Energy Research Institute, Japan, 1993.
  • N. I. Molla and S. M. Qaim, “A systematic study of (n,p) reactions at 14.7 MeV,” Nucl. Phys. A, 283 (2), 13 977 269-288, 1977.

Ir-191 ve Ir-193 izotoplarının (n,2n), (n,p) ve (n,a) Reaksiyon Tesir Kesitlerinin İncelenmesi

Year 2023, , 50 - 61, 22.06.2023
https://doi.org/10.29233/sdufeffd.1206635

Abstract

20,0 MeV’e kadar nötron kaynaklı reaksiyonlar için nükleer veriler, nükleer fizik, astrofizik ve tıp gibi birçok farklı alanda kullanılmaktadır. Bu çalışmada, farklı seviye yoğunluk modelleri kullanılarak iridyum izotoplarının (191,193Ir) (n,2n), (n,p) ve (n,a) reaksiyon tesir kesitleri 20,0 MeV’e kadar hesaplanmıştır. Model hesaplamalarında, ALICE-ASH, EMPIRE-3.2 ve TALYS-1.95 bilgisayar kodları kullanılmıştır. ALICE-ASH’de Fermi Gas Modeli, EMPIRE-3.2’de Genelleştirilmiş Süper Akışkan Modeli ve TALYS-1.95’de Sabit Sıcaklık Fermi Gaz Modeli seçilmiştir. Sonuçlar tartışılmış ve literatürde bulunan deneysel verilerle ve ENDF veri kütüphanesinden elde edilen değerlendirilmiş verilerle (ENDFB-VIII.0, JEFF-3.3 ve JENDL-2017) kıyaslanmıştır. Sonuçların, gelecekte yapılacak olan tesir kesit araştırmalarının geliştirilmesine önemli katkılar sağlayacağına inanılmaktadır.

References

  • A. Gilbert and A. G. W. Cameron, “A composite nuclear level density formula with shell correction,” Can. J. of Phys., 43 (8),1446-1496, 1965.
  • V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, “Phenomenological description of energy dependence of the level density parameter,” Sov. J. Nucl. Phys. (Yad. Fiz., v.), 21 (3), 485-490, 1975.
  • A. V. Ignatyuk, K. K. Istekov, and G. N. Smirenkin, “The role of collective effects in the systematics of nuclear level densities,” Sov. J. Nucl. Phys, 29 (4), 450, 1979.
  • S. K. Kataria, V. S. Ramamurthy, and S. S. Kapoor, “Semiempirical nuclear level density formula with shell effects,” Phys. Rev. C, 18, 549, 1978.
  • C. H. M. Broeders, A. Yu. Konobeyev, Yu. A. Korovin, V. P. Lunev, and M. Blann, “Report FZKA 7183,” http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf, 2006.
  • M. Şahan, E. Tel, A. Aydın, and İ. Yegingil, “Investigation of some stellar iron group fusion materials for (n, p) reactions,” J. Fusion. Energ., 31, 52-64, 2012.
  • T. Wang, G. Kim, Y. D. Oh, M. H. Cho, and I. S. Ko, W. “Namkung, neutron total cross sections and resonance parameters of palladium,” Nucl. Sci. Eng., 183, 286-297, 2016.
  • M. Yiğit and A. Kara, “Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64,6668Zn targets,” Nucl. Sci. Eng., 49, 996-1005, 2017.
  • M. Yiğit, “A review of (n,p) and (n,α) nuclear cross sections on palladium nuclei using different level density models and empirical formulas,” Appl. Radiat. Isotopes, 140: 355–362, 2018.
  • I. Pasha, B. Rudraswamy, S. V. Suryanarayana, H. Naik, S. P. Ram, L.S. Danu, T. Patel, S. Bishnoi, and M. P. Karantha, “Measurement of neutron induced reaction cross sections of palladium isotopes at the neutron energy of 14.54 +/- 0.24 MeV with covariance analysis,” J. Radioanal. Nucl. Ch., 325(2): 175-182, 2020.
  • A. Kaplan, M. Şekerci, V. Çapalı, and H. Özdoğan, “Photon Induced Reaction Cross-Section Calculations of Several, Structural Fusion Materials,” J. Fusion. Energ., 36, 213–217, 2017.
  • A. Kaplan, H. Özdoğan, A. Aydın, and E. Tel, “(,2n) Reaction Cross Section Calculations on Several Structural Fusion Materials,” J. Fusion. Energ., 32, 431–436, 2013.
  • A. Kaplan, H. Özdoğan, A. Aydın, and E. Tel, “Deuteron-induced cross section calculations of some structural fusion materials,” J. Fusion. Energ., 32, 97–102, 2013.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “Level density model effects on the production cross-section calculations of some medical isotopes via (α, xn) reactions where x = 1–3,” Mod. Phys. Lett. A, 35, 24, 2050202, 2020.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,γ) reactions,” Radiochim. Acta, 105, 1, 2019.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “Investigation on the different production routes of 67Ga radioisotope by using different level density models,” Biophysics and Medical Physics, 74, 277–281, 2019.
  • M. Yiğit, “Analysis of cross sections of (n,t) nuclear reaction using different empirical formulae and level density models,” Appl. Radiat. Isotopes, 139, September 2018, Pages 151-158
  • A. Kaplan, E. Tel, and A. Aydin, “The equilibrium and preequilibrium neutron-emission spectra of some structural fusion materials for (n, xn) reactions up to 16 MeV energy,” Phys. Atom. Nucl+,, 72, 6, 903–910, 2009.
  • H. Özdoğan, M. Şekerci, İ. H. Sarpun, and A. Kaplan, “Investigation of level density parameter effects on (p,n) and (p,2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr,” Appl. Radiat. Isotopes, 140, 29-34, 2018.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “Investigation of gamma strength functions and level density models effects on photon induced reaction cross–section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu,” Appl. Radiat. Isotopes, 143, 6-10, 2019.
  • M. Blann, “ALICE-91, Statistical model code system with fission competition”, RSIC Code Package PSR-146, Lawrence Livermore National Laboratory, California, USA, 1991.
  • R. Capote, V. Osorio, R. Lopez, E. Herrera, and M. R. Piris, “PCROSS program code” (Higher Institute of Nuclear Science and Technology, Cuba, 1991); Translated by the IAEA on the March 1991.
  • H. Sahan, M. Sahan, and E. Tel, “Cross-Section Calculation of (n, p) and (n, 2n) reactions for high temperature reactors construction materials tungsten and rhenium,” Phys. Atom. Nucl+, 84 (5), 724–738, 2021.
  • E. Tel, M. H. Bölükdemir, S. Okuducu, A. Aydın, and A. Kaplan, “Investigation of neutron skin effect, with density dependence by using a new calculation method for initial exciton numbers on pre-equilibrium reactions,” Phys. Scripta, 80, 065201, 2009.
  • A. J. Koning and J. P. Delaroche, “Local and global nucleon optical models from 1 keV to 200.0 MeV”, Nuclear Physics A, 713 (3-4), 231–310, 2003.
  • C. Kalbach, “Preequilibrium reactions with complex particle channels,” Phys. Rev. C, 71, 034606, 2005.
  • M. Sahan, E. Tel, H. Sahan, U. Gevher, and A. Kara, “Cross section calculations of (n,2n) and (n,p) nuclear reactions on germanium isotopes at 14–15 MeV,” J. Fusion. Energ., 35:730–742, 2016.
  • A. Koning, S. Hilaire, and S. Goriely, “User Manuel TALYS-1.95, A nuclear reaction program,” new edition- 24 december 2019 ed. http://www.talys.eu/download-talys/, 2019.
  • J. Luo, F. Tuo, and X. Kong, “Activation cross sections and isomeric cross section ratios for 184Os(n,2n)183m,gOs, 190Os(n,p)190m,gRe and 86Sr(n,2n)85m,gSr reactions from 13.5 to 14.8 MeV,” J. Radioanal. Nucl. Ch., 279 (2), 443–454, 2009.
  • C. K. Cline, “Extensions to the pre-equilibrium statistical model and a study of complex particle emission,” Nucl. Phys. A, 193, 417, 1972.
  • I. Ribansky, P. Oblozinsky, and E. Betak, “Pre-equilibrium decay and the exciton model,” Nucl. Phys. A, 205, 545-560, 1973.
  • M. Herman, R. Capote, M. Sin, A. Trkov, B. Carlson, D. Brown, G. Nobre, P. Oblozinsky, C. Mattoon, H. Wienke, S. Hoblit, Y. S. Cho, V. Plujko, and V. Zerkin, “EMPIRE-3.2 Malta modular system for nuclear reaction calculations and nuclear data evaluation,” User's Manual, 2013.
  • A. J. Koning and J. P. Delaroche, “Local and global nucleon optical models from 1 keV to 200.0 MeV,” Nucl. Phys. A, 713 (3-4), 231–310, 2003.
  • V. F. Weisskopf and D. H. Ewing, “On the yield of nuclear reactions with heavy elements,” Phys. Rev., 57, 472, 1940.
  • M. Blann and H. K. Vonach, “Global test of modified precompound decay models,” Phys. Rev., 28 (4), 1475-1492, 1983.
  • W. Hauser and H. Feshbach, “Inelastic scattering of neutrons,” Phys. Rev. C, 87, 366, 1952.
  • N. Patronis, C. T. Papadopoulos, S. Galanopoulos, M. Kokkoris, G. Perdikakis, R. Vlastou, A. Lagoyannis, and S. Harissopulos, “Activation cross section and isomeric cross-section ratio for the (n,2n) reaction on 191-Ir,” Phys. Rev. C, 75, 2007.
  • M. Herman, A. Marcinkowski, and K. Stankiewicz, “Statistical multi-step compound emission in (n,2n) reactions,” Nucl. Phys. A, 430 (1), 19, 69-83, 1984.
  • B. P. Bayhurst, J. S. Gilmore, R. J. Prestwood, J. B. Wilhelmy, N. Jarmie, B. H. Erkkila, and R. A. Hardekopf, “Cross sections for (n,xn) reactions between 7.5 and 28 MeV,” Phys. Rev. C, 12 (2), 451.
  • A. A. Filatenkov, Neutron activation cross sections measured at KRI in neutron energy region 13.4 - 14.9 MeV”, USSR report to the INDC. No. 0460, Austria, 2016.
  • C. Konno, Y. Ikeda, K. Osihi, K. Kawede, H. Yamomoto, and H. Maekawa, “JAERI- Reports”, No. 1329, Japan Atomic Energy Research Institute, Japan, 1993.
  • N. I. Molla and S. M. Qaim, “A systematic study of (n,p) reactions at 14.7 MeV,” Nucl. Phys. A, 283 (2), 13 977 269-288, 1977.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Halide Şahan 0000-0002-6223-6807

Eda Şenyiğit This is me 0000-0003-3437-5807

Publication Date June 22, 2023
Published in Issue Year 2023

Cite

IEEE H. Şahan and E. Şenyiğit, “Ir-191 ve Ir-193 izotoplarının (n,2n), (n,p) ve (n,a) Reaksiyon Tesir Kesitlerinin İncelenmesi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 18, no. 2, pp. 50–61, 2023, doi: 10.29233/sdufeffd.1206635.