Research Article
BibTex RIS Cite

An Investigation on the Removal of High Concentrations of PAHs Using Two-Liquid Phase System

Year 2023, , 213 - 218, 25.08.2023
https://doi.org/10.19113/sdufenbed.1187346

Abstract

Two-liquid phase systems consisting of two insoluble liquids can be effective in removing high concentrations of hydrocarbons from aqueous environments. In this study, the removal efficiencies of Naphthalene (Nap), Acenaphthene (Acn), Fluorene (Flu), Fluoranthene (Flr), Anthracene (Ant), and Pyrene (Pyr) at high concentrations in the two-liquid phase system were investigated. Two-liquid phase systems were constituted using Bis (2-Ethylhexyl) sebacate (BES) and aqueous fermentation media. Nutrient Broth (NB) and Bushnell Haas Yeast (BHY) medium were used as aqueous fermentation media. Acn, Flu, Flr, Ant, Pyr, and Nap were degraded at a rate of 93.1%, 80.8%, 57.6%, 68.5%, 63.8%, and 100%, respectively with BES/NB system. In the BES/BHY system, Acn, Flu, Flr,
Ant, Pyr, and Nap, were degraded at a rate of 29.6%, 44.3%, 22.8%, 68.1%, and 19.7%, 45.4%, respectively. When both systems are compared, it has been shown that the BES/NB system can be effective under specified conditions.

References

  • Mrozik, A., Piotrowska-Seget, Z., Łabużek, S. 2003. Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Polish Journal of Environmental Studies, 12(1), 15-25.
  • Abdel-Shafy. H. I. and Mansour, M. S. M. 2016A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 25, 107–123.
  • Mrozik, A. and Piotrowska-Seget, Z. 2010. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research 165, 363–375.
  • Lafortune, I., Juteau, P., Déziel, E., Lépine, F., Beaudet, R., Villemur, R. 2009. Bacterial Diversity of a Consortium Degrading High-Molecular-Weight Polycyclic Aromatic Hydrocarbons in a Two-Liquid Phase Biosystem. Microbial Ecology, 57, 455–468.
  • Alegbeleye, O. O., Opeolu, B. O., Jackson, V. 2017. Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Brazilian Journal of Microbiology, 48, 314–325.
  • Biache, C., Ouali, S., Cébron, A., Lorgeoux, C., Colombano, S., Faure, P. 2017. Bioremediation of PAH-contaminated soils: consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance. Journal of Hazardous Materials, 329, 1–10.
  • Boonchan, S., Britz, M. L., Stanley, G. A. 2000. Degradation and mineralization of high molecular weight polycyclic aromatic hydrocarbons by defined fungal bacterial cocultures. Applied and Environmental Microbiology, 66, 1007–1019.
  • Chen B, Huang J, Yuan K, Lin L, Wang X, Yang L., Luan, T. 2016. Direct evidences on bacterial growth pattern regulating pyrene degradation pathway and genotypic dioxygenase expression. Marine Pollution Bulletin, 105, 73–80.
  • Festa, S., Coppotelli, B. M., Morelli, I. S. 2016. Comparative bioaugmentation with a consortium and a single strain in a phenanthrene-contaminated soil: impact on the bacterial community and biodegradation. Applied Soil Ecology, 98, 8–19.
  • Singh, R., Karandikar, R., Phale, P. S. 2015. Microbial degradation of aromatic compounds and pesticides: challenges and solutions. pp. 67–95. Chandra, R., ed. 2015. Advances in Biodegradation and Bioremediation of Industrial Waste, CRC Press, Boca Raton, FL, 479p.
  • Bojes, H. K., Pope, P. G. 2007. Characterization of EPA's 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas. Regulatory toxicology and pharmacology, 47(3), 288–295.
  • Keith, L. H. 2015, The Source of U.S. EPA's Sixteen PAH Priority Pollutants, Polycyclic Aromatic Compounds, 35(2-4), 147-160.
  • Mezzanotte, V., Anzano, M., Collina, E., Marazzi, F. A., Lasagni, M. 2016. Distribution and Removal of Polycyclic Aromatic Hydrocarbons in Two Italian Municipal Wastewater Treatment Plants in 2011–2013, Polycyclic Aromatic Compounds, 36(3), 213-228.
  • Muangchinda, C., Yamazoe, A., Polrit, D., Thoetkiattikul, H., Mhuantong, W., Champreda, V., Pinyakong, O. 2017. Biodegradation of high concentrations of mixed polycyclic aromatic hydrocarbons by indigenous bacteria from ariver sediment: a microcosm study and bacterial community analysis. Environmental Science and Pollution Research, 24:4591–4602.
  • Ntougias, S., Melidis, P., Navrozidou, E., Tzegkas. F. 2015. Diversity and efficiency of anthracene-degrading bacteria isolated from a denitrifying activated sludge system treating municipal wastewater. International Biodeterioration and Biodegradation, 97, 151–158.
  • Obi, L. U., Atagana, H. I., Adeleke, R. A. 2016. Isolation and characterisation of crude oil sludge degrading bacteria. SpringerPlus, 5(1), 1946.
  • Van Hamme, J. D., Singh, A., Ward, O. P. 2003. Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67(4), 503–549.
  • Vural, C., Vural, C., Ozdemir G. 2020. Monitoring of the degradation of aromatic hydrocarbons by bioaugmented activated sludge. Journal of Chemical Technology and Biotechnology, 95(1), 52-62.
  • Daugulis A. J. 2001. Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends in Biotechnology, 19(11), 457–462.
  • Kanaujiya, D.K., Paul, T., Sinharoy, A., Pakshirajan, K. 2019. Biological Treatment Processes for the Removal of Organic Micropollutants from Wastewater: a Review. Current Pollution Reports, 5, 112–128.
  • Annesini, M. C., Tomei, M. C., Piemonte, V., Daugulis, A. J. 2016. Xenobiotic removal from wastewater in a two-phase partitioning bioreactor: Process modelling and identification of operational strategies. Chemical Engineering Journal, 296, 428-436.
  • Tomei, M. C., Annesini, M. C., Daugulis, A. J. Removal of Xenobiotics from Wastewater in Sequencing Batch Reactors: Conventional and Two-Phase Configurations. pp 355-374. Fatta-Kassinos, D., Bester, K., Kümmerer, K., ed. 2010. Xenobiotics in the Urban Water Cycle: Mass Flows, Environmental Processes, Mitigation and Treatment Strategies, Environmental Pollution, Vol. 16, Springer Science+Business Media B.V., 507p.
  • Quijano, G., Hernandez, M., Thalasso, F., Muñoz, R., Villaverde, S. 2009. Two-phase partitioning bioreactors in environmental biotechnology. Applied Microbiology and Biotechnology, 84(5), 829–846.
  • Wang, C., Wang, F., Wang, T., Bian, Y., Yang, X., Jiang, X. 2010. PAHs biodegradation potential of indigenous consortia from agricultural soil and contaminated soil in two-liquid-phase bioreactor (TLPB). Journal of Hazardous Materials, 176(1-3), 41–47.
  • Mahanty, B., Pakshirajan, K., Venkata Dasu, V. 2008. Biodegradation of pyrene by Mycobacterium frederiksbergense in a two-phase partitioning bioreactor system. Bioresource Technology, 99(7), 2694–2698.
  • Zilouei, H., Guieysse, B., Mattiasson, B. 2008. Two-phase partitioning bioreactor for the biodegradation of high concentrations of pentachlorophenol using Sphingobium chlorophenolicum DSM 8671. Chemosphere, 72(11), 1788–1794.
  • MacLeod, C. T., Daugulis, A. J. 2003. Biodegradation of polycyclic aromatic hydrocarbons in a two-phase partitioning bioreactor in the presence of a bioavailable solvent. Applied Microbiology and Biotechnology, 62(2-3), 291–296.
  • Tomei, M. C., Annesini, M. C., Piemonte, V., Prpich, G. P., Daugulis, A. J. 2010. Two-phase reactors applied to the removal of substituted phenols: comparison between liquid-liquid and liquid-solid systems. Water Science & Technology, 62(4), 776–782.

İki-Sıvı Fazlı Sistem Kullanılarak Yüksek Konsantrasyonlardaki PAH'ların Giderilmesi Üzerine Bir Araştırma

Year 2023, , 213 - 218, 25.08.2023
https://doi.org/10.19113/sdufenbed.1187346

Abstract

Birbirinde çözünmeyen iki sıvıdan oluşan iki-sıvı fazlı sistemler, sulu ortamlardan yüksek konsantrasyonlarda hidrokarbonların uzaklaştırılmasında etkili olabilir. Bu çalışmada yüksek konsantrasyonlardaki Naftalen (Nap), Asenaften (Acn), Floren (Flu), Floranten (Flr) Antrasen (Ant) ve Piren’in (Pyr) iki-sıvı fazlı sistemde giderim verimleri incelenmiştir. İki-sıvı fazlı sistemler Bis (2-Etilheksil) sebakat (BES) ve sulu fermentasyon ortamları kullanılarak oluşturulmuştur. Sulu fermentasyon ortamları olarak Nutrient Broth (NB) ve Bushnell Haas Yeast (BHY) besiyerleri kullanılmıştır. BES/NB sistemiyle Acn, Flu, Flr, Ant, Pyr ve Nap sırasıyla %93,1, %80,8, %57,6, %68,5, %63,8, %100 oranında parçalanmıştır. BES/BHY sisteminde Acn, Flu, Flr, Ant, Pyr ve Nap'nin sırasıyla %29,6, %44,3, %22,8, %68,1, %19,7 ve %45,4 oranında parçalanmıştır. Her iki sistem karşılaştırıldığında, BES/NB sisteminin belirlenen koşullar altında etkili bir sistem olabileceği gösterilmiştir.

References

  • Mrozik, A., Piotrowska-Seget, Z., Łabużek, S. 2003. Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Polish Journal of Environmental Studies, 12(1), 15-25.
  • Abdel-Shafy. H. I. and Mansour, M. S. M. 2016A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 25, 107–123.
  • Mrozik, A. and Piotrowska-Seget, Z. 2010. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research 165, 363–375.
  • Lafortune, I., Juteau, P., Déziel, E., Lépine, F., Beaudet, R., Villemur, R. 2009. Bacterial Diversity of a Consortium Degrading High-Molecular-Weight Polycyclic Aromatic Hydrocarbons in a Two-Liquid Phase Biosystem. Microbial Ecology, 57, 455–468.
  • Alegbeleye, O. O., Opeolu, B. O., Jackson, V. 2017. Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Brazilian Journal of Microbiology, 48, 314–325.
  • Biache, C., Ouali, S., Cébron, A., Lorgeoux, C., Colombano, S., Faure, P. 2017. Bioremediation of PAH-contaminated soils: consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance. Journal of Hazardous Materials, 329, 1–10.
  • Boonchan, S., Britz, M. L., Stanley, G. A. 2000. Degradation and mineralization of high molecular weight polycyclic aromatic hydrocarbons by defined fungal bacterial cocultures. Applied and Environmental Microbiology, 66, 1007–1019.
  • Chen B, Huang J, Yuan K, Lin L, Wang X, Yang L., Luan, T. 2016. Direct evidences on bacterial growth pattern regulating pyrene degradation pathway and genotypic dioxygenase expression. Marine Pollution Bulletin, 105, 73–80.
  • Festa, S., Coppotelli, B. M., Morelli, I. S. 2016. Comparative bioaugmentation with a consortium and a single strain in a phenanthrene-contaminated soil: impact on the bacterial community and biodegradation. Applied Soil Ecology, 98, 8–19.
  • Singh, R., Karandikar, R., Phale, P. S. 2015. Microbial degradation of aromatic compounds and pesticides: challenges and solutions. pp. 67–95. Chandra, R., ed. 2015. Advances in Biodegradation and Bioremediation of Industrial Waste, CRC Press, Boca Raton, FL, 479p.
  • Bojes, H. K., Pope, P. G. 2007. Characterization of EPA's 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas. Regulatory toxicology and pharmacology, 47(3), 288–295.
  • Keith, L. H. 2015, The Source of U.S. EPA's Sixteen PAH Priority Pollutants, Polycyclic Aromatic Compounds, 35(2-4), 147-160.
  • Mezzanotte, V., Anzano, M., Collina, E., Marazzi, F. A., Lasagni, M. 2016. Distribution and Removal of Polycyclic Aromatic Hydrocarbons in Two Italian Municipal Wastewater Treatment Plants in 2011–2013, Polycyclic Aromatic Compounds, 36(3), 213-228.
  • Muangchinda, C., Yamazoe, A., Polrit, D., Thoetkiattikul, H., Mhuantong, W., Champreda, V., Pinyakong, O. 2017. Biodegradation of high concentrations of mixed polycyclic aromatic hydrocarbons by indigenous bacteria from ariver sediment: a microcosm study and bacterial community analysis. Environmental Science and Pollution Research, 24:4591–4602.
  • Ntougias, S., Melidis, P., Navrozidou, E., Tzegkas. F. 2015. Diversity and efficiency of anthracene-degrading bacteria isolated from a denitrifying activated sludge system treating municipal wastewater. International Biodeterioration and Biodegradation, 97, 151–158.
  • Obi, L. U., Atagana, H. I., Adeleke, R. A. 2016. Isolation and characterisation of crude oil sludge degrading bacteria. SpringerPlus, 5(1), 1946.
  • Van Hamme, J. D., Singh, A., Ward, O. P. 2003. Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67(4), 503–549.
  • Vural, C., Vural, C., Ozdemir G. 2020. Monitoring of the degradation of aromatic hydrocarbons by bioaugmented activated sludge. Journal of Chemical Technology and Biotechnology, 95(1), 52-62.
  • Daugulis A. J. 2001. Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends in Biotechnology, 19(11), 457–462.
  • Kanaujiya, D.K., Paul, T., Sinharoy, A., Pakshirajan, K. 2019. Biological Treatment Processes for the Removal of Organic Micropollutants from Wastewater: a Review. Current Pollution Reports, 5, 112–128.
  • Annesini, M. C., Tomei, M. C., Piemonte, V., Daugulis, A. J. 2016. Xenobiotic removal from wastewater in a two-phase partitioning bioreactor: Process modelling and identification of operational strategies. Chemical Engineering Journal, 296, 428-436.
  • Tomei, M. C., Annesini, M. C., Daugulis, A. J. Removal of Xenobiotics from Wastewater in Sequencing Batch Reactors: Conventional and Two-Phase Configurations. pp 355-374. Fatta-Kassinos, D., Bester, K., Kümmerer, K., ed. 2010. Xenobiotics in the Urban Water Cycle: Mass Flows, Environmental Processes, Mitigation and Treatment Strategies, Environmental Pollution, Vol. 16, Springer Science+Business Media B.V., 507p.
  • Quijano, G., Hernandez, M., Thalasso, F., Muñoz, R., Villaverde, S. 2009. Two-phase partitioning bioreactors in environmental biotechnology. Applied Microbiology and Biotechnology, 84(5), 829–846.
  • Wang, C., Wang, F., Wang, T., Bian, Y., Yang, X., Jiang, X. 2010. PAHs biodegradation potential of indigenous consortia from agricultural soil and contaminated soil in two-liquid-phase bioreactor (TLPB). Journal of Hazardous Materials, 176(1-3), 41–47.
  • Mahanty, B., Pakshirajan, K., Venkata Dasu, V. 2008. Biodegradation of pyrene by Mycobacterium frederiksbergense in a two-phase partitioning bioreactor system. Bioresource Technology, 99(7), 2694–2698.
  • Zilouei, H., Guieysse, B., Mattiasson, B. 2008. Two-phase partitioning bioreactor for the biodegradation of high concentrations of pentachlorophenol using Sphingobium chlorophenolicum DSM 8671. Chemosphere, 72(11), 1788–1794.
  • MacLeod, C. T., Daugulis, A. J. 2003. Biodegradation of polycyclic aromatic hydrocarbons in a two-phase partitioning bioreactor in the presence of a bioavailable solvent. Applied Microbiology and Biotechnology, 62(2-3), 291–296.
  • Tomei, M. C., Annesini, M. C., Piemonte, V., Prpich, G. P., Daugulis, A. J. 2010. Two-phase reactors applied to the removal of substituted phenols: comparison between liquid-liquid and liquid-solid systems. Water Science & Technology, 62(4), 776–782.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Caner Vural 0000-0003-1400-6377

Publication Date August 25, 2023
Published in Issue Year 2023

Cite

APA Vural, C. (2023). An Investigation on the Removal of High Concentrations of PAHs Using Two-Liquid Phase System. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 213-218. https://doi.org/10.19113/sdufenbed.1187346
AMA Vural C. An Investigation on the Removal of High Concentrations of PAHs Using Two-Liquid Phase System. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. August 2023;27(2):213-218. doi:10.19113/sdufenbed.1187346
Chicago Vural, Caner. “An Investigation on the Removal of High Concentrations of PAHs Using Two-Liquid Phase System”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, no. 2 (August 2023): 213-18. https://doi.org/10.19113/sdufenbed.1187346.
EndNote Vural C (August 1, 2023) An Investigation on the Removal of High Concentrations of PAHs Using Two-Liquid Phase System. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 2 213–218.
IEEE C. Vural, “An Investigation on the Removal of High Concentrations of PAHs Using Two-Liquid Phase System”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 27, no. 2, pp. 213–218, 2023, doi: 10.19113/sdufenbed.1187346.
ISNAD Vural, Caner. “An Investigation on the Removal of High Concentrations of PAHs Using Two-Liquid Phase System”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/2 (August 2023), 213-218. https://doi.org/10.19113/sdufenbed.1187346.
JAMA Vural C. An Investigation on the Removal of High Concentrations of PAHs Using Two-Liquid Phase System. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2023;27:213–218.
MLA Vural, Caner. “An Investigation on the Removal of High Concentrations of PAHs Using Two-Liquid Phase System”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 2, 2023, pp. 213-8, doi:10.19113/sdufenbed.1187346.
Vancouver Vural C. An Investigation on the Removal of High Concentrations of PAHs Using Two-Liquid Phase System. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2023;27(2):213-8.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688