Research Article
BibTex RIS Cite

Production of Nanofibrous Wound Dressings Via Solution Blowing

Year 2018, Volume: 25 Issue: 110, 78 - 85, 30.06.2018
https://doi.org/10.7216/1300759920182511002

Abstract

In this study, thermoplastic polyurethane (TPU) nanofibers were produced via a novel technique: solution blowing. Smoke tree oil was obtained with soxhlet extraction and according to GC-MS analysis; it was shown that obtained extract includes constituents with high antimicrobial activity. Therefore, TPU nanofibers coated with smoke tree oil at different amounts using drop casting in order to obtain antibacterial nanofibers. All coated nanofibers showed antibacterial activity against to S.Aureus and E.Coli. On the other hand, SEM images show that increase of amount of smoke tree oil effect to fiber morphology negatively. Thus, air permeability of nanofibers mats decreased significantly. 

References

  • Velnar, T., Bailey, T., & Smrkolj, V. (2009). The wound healing process: an overview of the cellular and molecular mechanisms. Journal of International Medical Research, 37(5), 1528–1542.
  • Cai, Z., Mo, X., Zhang, K., Fan, L., Yin, A., He, C., & Wang, H. (2010). Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. International journal of molecular sciences, 11(9), 3529–3539.
  • Hemaiswarya, S., Kruthiventi, A. K., & Doble, M. (2008). Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 15(8), 639–652.
  • Diao, W.-R., Hu, Q.-P., Zhang, H., & Xu, J.-G. (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control, 35(1), 109–116.
  • Yassa, N., Masoomi, F., Rankouhi, S. R., & Hadjiakhoondi, A. (2015). Chemical composition and antioxidant activity of the extract and essential oil of Rosa damascena from Iran, population of Guilan. DARU Journal of Pharmaceutical Sciences, 17(3), 175–180.
  • Nakahara, K., Alzoreky, N. S., Yoshihashi, T., Nguyen, H. T., & Trakoontivakorn, G. (2013). Chemical composition and antifungal activity of essential oil from Cymbopogon nardus (citronella grass). Japan Agricultural Research Quarterly: JARQ, 37(4), 249–252.
  • Gilling, D. H., Kitajima, M., Torrey, J. R., & Bright, K. R. (2014). Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. Journal of applied microbiology, 116(5), 1149–1163.
  • Avci, H., Monticello, R., & Kotek, R. (2013). Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts. Journal of Biomaterials Science, Polymer Edition, 24(16), 1815–1830.
  • Tongnuanchan, P., & Benjakul, S. (2014). Essential oils: extraction, bioactivities, and their uses for food preservation. Journal of food science, 79(7). Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/1750-3841.12492/full
  • Martins, I. M., Barreiro, M. F., Coelho, M., & Rodrigues, A. E. (2014). Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chemical Engineering Journal, 245, 191–200.
  • Greenberg, M. J., & Slyer, J. T. (2017). Effectiveness of Silexan oral lavender essential oil compared to inhaled lavender essential oil aromatherapy on sleep in adults: a systematic review protocol. JBI Database of Systematic Reviews and Implementation Reports, 15(4), 961–970.
  • Németh-Zámboriné, É., Szabó, K., Rajhárt, P., Lelik, L., Bernáth, J., & Popp, T. (2015). Effect of Nutrients on Drug Production and Essential Oil Content of Lemon Balm (Melissa officinalis L.). Journal of Essential Oil Bearing Plants, 18(6), 1508–1515.
  • Kim, B.-S., & Kim, I.-S. (2011). Recent nanofiber technologies. Polymer Reviews, 51(3), 235–238.
  • Cengiz, F., Krucińska, I., Gliścińska, E., Chrzanowski, M., & Goektepe, F. (2009). Comparative analysis of various electrospinning methods of nanofibre formation. Fibres & Textiles in Eastern Europe, (1 (72)), 13–19.
  • Lu, Y., Li, Y., Zhang, S., Xu, G., Fu, K., Lee, H., & Zhang, X. (2013). Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. European Polymer Journal, 49(12), 3834–3845.
  • Xu, J., Liu, C., Hsu, P.-C., Liu, K., Zhang, R., Liu, Y., & Cui, Y. (2016). Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter. Nano letters, 16(2), 1270–1275.
  • Valipouri, A., Ravandi, S. A. H., & Pishevar, A. (2015). Optimization of the parameters involved in fabrication of solid state polymerized polyamide (SSP PA66) nanofibers via an enhanced electro-centrifuge spinning. Journal of Industrial Textiles, 45(3), 368–386.
  • Ju, J., Kang, W., Deng, N., Li, L., Zhao, Y., Ma, X., … Cheng, B. (2017). Preparation and characterization of PVA-based carbon nanofibers with honeycomb-like porous structure via electro-blown spinning method. Microporous and Mesoporous Materials, 239, 416–425.
  • Medeiros, E. S., Glenn, G. M., Klamczynski, A. P., Orts, W. J., & Mattoso, L. H. (2009). Solution blow spinning: A new method to produce micro-and nanofibers from polymer solutions. Journal of applied polymer science, 113(4), 2322–2330.
  • Polat, Y., Pampal, E. S., Stojanovska, E., Simsek, R., Hassanin, A., Kilic, A., Yilmaz, S. (2016). Solution blowing of thermoplastic polyurethane nanofibers: A facile method to produce flexible porous materials. Journal of Applied Polymer Science, 133(9).
  • Bonan, R. F., Bonan, P. R., Batista, A. U., Sampaio, F. C., Albuquerque, A. J., Moraes, M. C., Oliveira, J. E. (2015). In vitro antimicrobial activity of solution blow spun poly (lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Materials Science and Engineering: C, 48, 372–377.
  • Bilbao-Sainz, C., Chiou, B.-S., Valenzuela-Medina, D., Du, W.-X., Gregorski, K. S., Williams, T. G., … Orts, W. J. (2014). Solution blow spun poly (lactic acid)/hydroxypropyl methylcellulose nanofibers with antimicrobial properties. European Polymer Journal, 54, 1–10.
  • Behrens, A. M., Casey, B. J., Sikorski, M. J., Wu, K. L., Tutak, W., Sandler, A. D., & Kofinas, P. (2014). In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Letters, 3(3), 249–254.
  • Liu, R., Xu, X., Zhuang, X., & Cheng, B. (2014). Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydrate polymers, 101, 1116–1121.
  • Xu, X., Zhou, G., Li, X., Zhuang, X., Wang, W., Cai, Z., … Li, H. (2016). Solution blowing of chitosan/PLA/PEG hydrogel nanofibers for wound dressing. Fibers and Polymers, 17(2), 205–211.
  • Demirci, B., Demirci, F., & Başer, K. H. C. (2003). Composition of the essential oil of Cotinus coggygria Scop. from Turkey. Flavour and fragrance journal, 18(1), 43–44.
  • Novaković, M., Vučković, I., Janaćković, P. ja, Soković, M., Filipović, A., Tešević, V., & Milosavljević, S. (2007). Chemical composition, antibacterial and antifungal activity of the essential oils of Cotinus coggygria from Serbia. Journal of the Serbian Chemical Society, 72(11), 1045–1051.
  • Tunç, K., Hos, A., & Gunes, B. (2013). Investigation of antibacterial properties of Cotinus coggygria from Turkey. Pol. J. Environ. Stud, 22, 1559–1561.
  • Matić, S., Stanić, S., Solujić, S., Milošević, T., & Niciforović, N. (2011). Biological properties of the Cotinus coggygria methanol extract. Periodicum biologorum, 113(1), 87–92.
  • Borchardt, J. R., Wyse, D. L., Sheaffer, C. C., Kauppi, K. L., Ehlke, R. G. F. N. J., Biesboer, D. D., & Bey, R. F. (2008). Antimicrobial activity of native and naturalized plants of Minnesota and Wisconsin. Journal of medicinal plants research, 2(5), 098–110.
  • Sheikh, F. A., Kanjwal, M. A., Saran, S., Chung, W.-J., & Kim, H. (2011). Polyurethane nanofibers containing copper nanoparticles as future materials. Applied Surface Science, 257(7), 3020–3026.
  • Halkman, A. K. (2005). Mikroorganizma analiz yöntemleri. Halkman. AK (Eds.), Merck Gıda Mikrobiyolojisi Uygulamaları. Başak Press Ltd. Şti., Ankara, 89–124.
  • Kocaçalışkan, I., Talan, I., & Terzi, I. (2006). Antimicrobial activity of catechol and pyrogallol as allelochemicals. Zeitschrift für Naturforschung C, 61(9–10), 639–642.
  • Özçelik, B., Kartal, M., & Orhan, I. (2011). Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical biology, 49(4), 396–402.
  • McGaw, L. J., Jäger, A. K., Van Staden, J., & Houghton, P. J. (2002). Antibacterial effects of fatty acids and related compounds from plants. South African journal of botany, 68(4), 417–423.
  • Cieślik-Boczula, K., & Koll, A. (2009). The effect of 3-pentadecylphenol on DPPC bilayers ATR-IR and 31 P NMR studies. Biophysical chemistry, 140(1), 51–56.
  • Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of ethnopharmacology, 130(1), 107–115.

Antibakteriyel Nanolif Yapılarının Çözeltiden Üfleme Sistemi ile Üretimi ve Karakterizasyonu

Year 2018, Volume: 25 Issue: 110, 78 - 85, 30.06.2018
https://doi.org/10.7216/1300759920182511002

Abstract

Bu çalışmada termoplastik poliüretan (TPU) nanolifler, yenilikçi bir yöntem olan çözeltiden üfleme ile üretilmiştir. Duman ağacı özütü, sokslet ekstraksiyonu ile elde edilmiş ve GC-MS analizine göre elde edilen özütün antimikrobiyal etkinliğe sahip bileşenleri içerdiği görülmüştür. Dolayısıyla TPU nanolifler, antibakteriyel etkinlik kazandırılmak için farklı miktarlarda (2-10 mg/cm2) duman ağacı özütü ile mikro döküm yöntemiyle kaplanmıştır. Kaplanan tüm numuneler difüzyon agar testinde S. Aureus ve E.Coli bakterilerine karşı etkinlik göstermişlerdir. Ancak, SEM görüntülerine göre artan duman ağacı özütü miktarının nanolif morfolojisini olumsuz etkilediği görülmüştür. Bunun sonucunda da nanolif yapılarının hava geçirgenlik değerleri düşmüştür. 

References

  • Velnar, T., Bailey, T., & Smrkolj, V. (2009). The wound healing process: an overview of the cellular and molecular mechanisms. Journal of International Medical Research, 37(5), 1528–1542.
  • Cai, Z., Mo, X., Zhang, K., Fan, L., Yin, A., He, C., & Wang, H. (2010). Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. International journal of molecular sciences, 11(9), 3529–3539.
  • Hemaiswarya, S., Kruthiventi, A. K., & Doble, M. (2008). Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 15(8), 639–652.
  • Diao, W.-R., Hu, Q.-P., Zhang, H., & Xu, J.-G. (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control, 35(1), 109–116.
  • Yassa, N., Masoomi, F., Rankouhi, S. R., & Hadjiakhoondi, A. (2015). Chemical composition and antioxidant activity of the extract and essential oil of Rosa damascena from Iran, population of Guilan. DARU Journal of Pharmaceutical Sciences, 17(3), 175–180.
  • Nakahara, K., Alzoreky, N. S., Yoshihashi, T., Nguyen, H. T., & Trakoontivakorn, G. (2013). Chemical composition and antifungal activity of essential oil from Cymbopogon nardus (citronella grass). Japan Agricultural Research Quarterly: JARQ, 37(4), 249–252.
  • Gilling, D. H., Kitajima, M., Torrey, J. R., & Bright, K. R. (2014). Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. Journal of applied microbiology, 116(5), 1149–1163.
  • Avci, H., Monticello, R., & Kotek, R. (2013). Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts. Journal of Biomaterials Science, Polymer Edition, 24(16), 1815–1830.
  • Tongnuanchan, P., & Benjakul, S. (2014). Essential oils: extraction, bioactivities, and their uses for food preservation. Journal of food science, 79(7). Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/1750-3841.12492/full
  • Martins, I. M., Barreiro, M. F., Coelho, M., & Rodrigues, A. E. (2014). Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chemical Engineering Journal, 245, 191–200.
  • Greenberg, M. J., & Slyer, J. T. (2017). Effectiveness of Silexan oral lavender essential oil compared to inhaled lavender essential oil aromatherapy on sleep in adults: a systematic review protocol. JBI Database of Systematic Reviews and Implementation Reports, 15(4), 961–970.
  • Németh-Zámboriné, É., Szabó, K., Rajhárt, P., Lelik, L., Bernáth, J., & Popp, T. (2015). Effect of Nutrients on Drug Production and Essential Oil Content of Lemon Balm (Melissa officinalis L.). Journal of Essential Oil Bearing Plants, 18(6), 1508–1515.
  • Kim, B.-S., & Kim, I.-S. (2011). Recent nanofiber technologies. Polymer Reviews, 51(3), 235–238.
  • Cengiz, F., Krucińska, I., Gliścińska, E., Chrzanowski, M., & Goektepe, F. (2009). Comparative analysis of various electrospinning methods of nanofibre formation. Fibres & Textiles in Eastern Europe, (1 (72)), 13–19.
  • Lu, Y., Li, Y., Zhang, S., Xu, G., Fu, K., Lee, H., & Zhang, X. (2013). Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. European Polymer Journal, 49(12), 3834–3845.
  • Xu, J., Liu, C., Hsu, P.-C., Liu, K., Zhang, R., Liu, Y., & Cui, Y. (2016). Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter. Nano letters, 16(2), 1270–1275.
  • Valipouri, A., Ravandi, S. A. H., & Pishevar, A. (2015). Optimization of the parameters involved in fabrication of solid state polymerized polyamide (SSP PA66) nanofibers via an enhanced electro-centrifuge spinning. Journal of Industrial Textiles, 45(3), 368–386.
  • Ju, J., Kang, W., Deng, N., Li, L., Zhao, Y., Ma, X., … Cheng, B. (2017). Preparation and characterization of PVA-based carbon nanofibers with honeycomb-like porous structure via electro-blown spinning method. Microporous and Mesoporous Materials, 239, 416–425.
  • Medeiros, E. S., Glenn, G. M., Klamczynski, A. P., Orts, W. J., & Mattoso, L. H. (2009). Solution blow spinning: A new method to produce micro-and nanofibers from polymer solutions. Journal of applied polymer science, 113(4), 2322–2330.
  • Polat, Y., Pampal, E. S., Stojanovska, E., Simsek, R., Hassanin, A., Kilic, A., Yilmaz, S. (2016). Solution blowing of thermoplastic polyurethane nanofibers: A facile method to produce flexible porous materials. Journal of Applied Polymer Science, 133(9).
  • Bonan, R. F., Bonan, P. R., Batista, A. U., Sampaio, F. C., Albuquerque, A. J., Moraes, M. C., Oliveira, J. E. (2015). In vitro antimicrobial activity of solution blow spun poly (lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Materials Science and Engineering: C, 48, 372–377.
  • Bilbao-Sainz, C., Chiou, B.-S., Valenzuela-Medina, D., Du, W.-X., Gregorski, K. S., Williams, T. G., … Orts, W. J. (2014). Solution blow spun poly (lactic acid)/hydroxypropyl methylcellulose nanofibers with antimicrobial properties. European Polymer Journal, 54, 1–10.
  • Behrens, A. M., Casey, B. J., Sikorski, M. J., Wu, K. L., Tutak, W., Sandler, A. D., & Kofinas, P. (2014). In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Letters, 3(3), 249–254.
  • Liu, R., Xu, X., Zhuang, X., & Cheng, B. (2014). Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydrate polymers, 101, 1116–1121.
  • Xu, X., Zhou, G., Li, X., Zhuang, X., Wang, W., Cai, Z., … Li, H. (2016). Solution blowing of chitosan/PLA/PEG hydrogel nanofibers for wound dressing. Fibers and Polymers, 17(2), 205–211.
  • Demirci, B., Demirci, F., & Başer, K. H. C. (2003). Composition of the essential oil of Cotinus coggygria Scop. from Turkey. Flavour and fragrance journal, 18(1), 43–44.
  • Novaković, M., Vučković, I., Janaćković, P. ja, Soković, M., Filipović, A., Tešević, V., & Milosavljević, S. (2007). Chemical composition, antibacterial and antifungal activity of the essential oils of Cotinus coggygria from Serbia. Journal of the Serbian Chemical Society, 72(11), 1045–1051.
  • Tunç, K., Hos, A., & Gunes, B. (2013). Investigation of antibacterial properties of Cotinus coggygria from Turkey. Pol. J. Environ. Stud, 22, 1559–1561.
  • Matić, S., Stanić, S., Solujić, S., Milošević, T., & Niciforović, N. (2011). Biological properties of the Cotinus coggygria methanol extract. Periodicum biologorum, 113(1), 87–92.
  • Borchardt, J. R., Wyse, D. L., Sheaffer, C. C., Kauppi, K. L., Ehlke, R. G. F. N. J., Biesboer, D. D., & Bey, R. F. (2008). Antimicrobial activity of native and naturalized plants of Minnesota and Wisconsin. Journal of medicinal plants research, 2(5), 098–110.
  • Sheikh, F. A., Kanjwal, M. A., Saran, S., Chung, W.-J., & Kim, H. (2011). Polyurethane nanofibers containing copper nanoparticles as future materials. Applied Surface Science, 257(7), 3020–3026.
  • Halkman, A. K. (2005). Mikroorganizma analiz yöntemleri. Halkman. AK (Eds.), Merck Gıda Mikrobiyolojisi Uygulamaları. Başak Press Ltd. Şti., Ankara, 89–124.
  • Kocaçalışkan, I., Talan, I., & Terzi, I. (2006). Antimicrobial activity of catechol and pyrogallol as allelochemicals. Zeitschrift für Naturforschung C, 61(9–10), 639–642.
  • Özçelik, B., Kartal, M., & Orhan, I. (2011). Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical biology, 49(4), 396–402.
  • McGaw, L. J., Jäger, A. K., Van Staden, J., & Houghton, P. J. (2002). Antibacterial effects of fatty acids and related compounds from plants. South African journal of botany, 68(4), 417–423.
  • Cieślik-Boczula, K., & Koll, A. (2009). The effect of 3-pentadecylphenol on DPPC bilayers ATR-IR and 31 P NMR studies. Biophysical chemistry, 140(1), 51–56.
  • Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of ethnopharmacology, 130(1), 107–115.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Emine Canbay Gökçe This is me

Yasin Akgül

Ali Kılıç 0000-0001-5915-8732

Ercan Açma This is me

Publication Date June 30, 2018
Published in Issue Year 2018 Volume: 25 Issue: 110

Cite

APA Canbay Gökçe, E., Akgül, Y., Kılıç, A., Açma, E. (2018). Antibakteriyel Nanolif Yapılarının Çözeltiden Üfleme Sistemi ile Üretimi ve Karakterizasyonu. Tekstil Ve Mühendis, 25(110), 78-85. https://doi.org/10.7216/1300759920182511002
AMA Canbay Gökçe E, Akgül Y, Kılıç A, Açma E. Antibakteriyel Nanolif Yapılarının Çözeltiden Üfleme Sistemi ile Üretimi ve Karakterizasyonu. Tekstil ve Mühendis. June 2018;25(110):78-85. doi:10.7216/1300759920182511002
Chicago Canbay Gökçe, Emine, Yasin Akgül, Ali Kılıç, and Ercan Açma. “Antibakteriyel Nanolif Yapılarının Çözeltiden Üfleme Sistemi Ile Üretimi Ve Karakterizasyonu”. Tekstil Ve Mühendis 25, no. 110 (June 2018): 78-85. https://doi.org/10.7216/1300759920182511002.
EndNote Canbay Gökçe E, Akgül Y, Kılıç A, Açma E (June 1, 2018) Antibakteriyel Nanolif Yapılarının Çözeltiden Üfleme Sistemi ile Üretimi ve Karakterizasyonu. Tekstil ve Mühendis 25 110 78–85.
IEEE E. Canbay Gökçe, Y. Akgül, A. Kılıç, and E. Açma, “Antibakteriyel Nanolif Yapılarının Çözeltiden Üfleme Sistemi ile Üretimi ve Karakterizasyonu”, Tekstil ve Mühendis, vol. 25, no. 110, pp. 78–85, 2018, doi: 10.7216/1300759920182511002.
ISNAD Canbay Gökçe, Emine et al. “Antibakteriyel Nanolif Yapılarının Çözeltiden Üfleme Sistemi Ile Üretimi Ve Karakterizasyonu”. Tekstil ve Mühendis 25/110 (June 2018), 78-85. https://doi.org/10.7216/1300759920182511002.
JAMA Canbay Gökçe E, Akgül Y, Kılıç A, Açma E. Antibakteriyel Nanolif Yapılarının Çözeltiden Üfleme Sistemi ile Üretimi ve Karakterizasyonu. Tekstil ve Mühendis. 2018;25:78–85.
MLA Canbay Gökçe, Emine et al. “Antibakteriyel Nanolif Yapılarının Çözeltiden Üfleme Sistemi Ile Üretimi Ve Karakterizasyonu”. Tekstil Ve Mühendis, vol. 25, no. 110, 2018, pp. 78-85, doi:10.7216/1300759920182511002.
Vancouver Canbay Gökçe E, Akgül Y, Kılıç A, Açma E. Antibakteriyel Nanolif Yapılarının Çözeltiden Üfleme Sistemi ile Üretimi ve Karakterizasyonu. Tekstil ve Mühendis. 2018;25(110):78-85.