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Abstract
In this study, we tackle the problem of estimation of stress-strength reliability
R = Pr(X < Y ) based on upper record values for exponential power distribution. We
use the maximum likelihood and Bayes methods to estimate R. The Tierney-Kadane ap-
proximation is used to compute the Bayes estimation of R since the Bayes estimator can
not be obtained analytically. We also derive asymptotic confidence interval based on the
asymptotic distribution of the maximum likelihood estimator of R. We consider a Monte
Carlo simulation study in order to compare the performances of the maximum likelihood
estimators and Bayes estimators according to mean square error criteria. Finally, a real
data application is presented.
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Keywords. Upper record values , maximum likelihood estimator, Bayesian estimation,
asymptotic confidence interval, Tierney-Kadane approximation

1. Introduction
Lower record values are defined as the observation has a lower value than all the obser-

vations obtained before it while upper record values are described as the observation has a
upper value than all the observations obtained before it. The record is a common concept
in daily life. The record values are values that are immediately noticed, memorized and
not forgotten in a large number of data. The records can be encountered in many areas
such as sports science and natural sciences. For instance, in weather news, the presenter
emphasizes the highest and lowest temperatures of the day. These temperature values are
lower and upper records respectively. On the other hand, the athletes who broke records
in the Olympic games are often mentioned throughout the tournament, even after years if
the record they broke is not repeated. While the player with the lowest time to complete
the race wins the gold medal, the player who completes the race with the lowest time
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among the gold medal winners during all the Olympics also breaks the record.The upper
record values are defined mathematically as follows:

Let Xi, i≥1 be a sequence of independent and identically distributed (iid) continuous
random variables with cumulative distribution function (cdf) F (x) and probability density
function (pdf) f(x). The first record time is defined as U (1) = 1 and m-th upper record
time is defined as

U (m) = min
{

j > U (m − 1) : Xj > XU(m−1)
}

, (1.1)

where XU(m) is m-th upper record value.The first study about record values was done by
[12]. Then, increasing the interest of many authors led to there are various studies about
record values in literature. For more information about records see [1,4–6,8,20,26,35,39].

The record values are significant in data analysis obtained from many real life area such
as engineering, meteorology, agriculture, hydrology, sports, medical science and life-tests.
Many products may break under stress in reliability studies. For instance, an elevator
fails when exposed to too much load, or an electronic component breaks when exposed
to too high temperature. However, the exact breaking stress or breaking point differs
even between the same parts. Therefore, the measurements can be made sequentially and
only values greater (or smaller) than all previous values are recorded in such experiments.
The record values may be useful in such experiments. Since the number of measurements
made is considerably smaller than the whole sample size. Also, these record values can be
significant when measurements of these experiments are costly and the whole sample is
destroyed [37]. Stress-strength model defines the life of a component (or a system) having
Y strength and exposed to X stress and R = P (X < Y ) is defined as stress-strength
reliability. The stress-strength models have extensive applications in many areas such as
medicine, biology, engineering and agriculture. The R can be written as follows:

R = P (X < Y ) =
∞∫

0

FX (y) fY (y) dy, (1.2)

where fY (.) is pdf of Y , and FX(.) is the cdf of X.
Recently, the estimation the R is very popular in the literature and many authors

have studied the problem of estimation R under various assumptions on X and Y for
various distributions. For some references and more applications of the R, see [2, 15, 19,
22, 29]. On the other hand, some authors have investigated the estimation of R based on
record data. Baklizi [10] obtained the maximum likelihood and Bayesian estimation of R
based on lower record values for the one-parameter generalized exponential distribution.
Baklizi [9] considered the interval estimation of R based on record values for the two-
parameter exponential distribution. Nadar and Kızılaslan [28] obtained the maximum
likelihood estimator (MLE) and Bayes estimators of R based on upper record values from
Kumaraswamy distribution. Tarvirdizade and Kazemzadeh [36] studied the estimation
of R based on record data from the Burr Type X distribution. Asgharzadeh et al. [3]
extended the results of [10] and considered the estimation of R based on the two-parameter
generalized exponential records. Kızılaslan and Nadar [23] studied about the estimation
of R based on upper records for Burr Type XII distribution.

The exponential power (EP) distribution was proposed as a lifetime model by [31]. The
pdf and cdf of EP distribution are given by

f(x; α, β) = β

α

(
x

α

)β−1
e( x

α )β

e

[
1−e( x

α )β
]
, x > 0, α > 0, β > 0 (1.3)

and

F (x; α, β) = 1 − e

[
1−e( x

α )β
]

, x > 0, α > 0, β > 0 (1.4)
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where α and β are the scale and shape parameters, respectively. Smith and Bain [31]
mentioned that the hazard function of EP distribution may be U-shaped. Therefore, the
EP distribution may be more flexible in data modeling than similar distributions. EP
distribution has been discussed and extended by some authors, see for example, [11,13,25,
30]. Akdam et al. [7] studied the estimation of R for the EP distribution under progressive
type II censoring. Zhi [40] examined the MLEs of parameters based on upper records for
EP distribution. Tans et al. [32] suggested a new extension of EP distribution.

In this paper, we consider the problem of estimation R = P (X < Y ), under the as-
sumption that X ∼ EP (α1, β1) and Y ∼ EP (α2, β2), and X and Y are independently
distributed. Thus, R can be written as follows:

R =
∞∫

0

β2
α2

(
y

α2

)β2−1
exp

[(
y

α2

)β2
]

exp

1 − e

(
y

α2

)β2


×
[
1 − exp

(
1 − e( y

α1 )β1
)]

dy. (1.5)

The integral in (1.5) can be computed by numerical methods. The motivation of this
paper is the lack of study about estimation of R = P (X < Y ) for the EP records. We
provide a new example to relevant literature on estimation of R based on upper records.
We obtain the MLE and approximate Bayesian estimators of R based on upper record
values for EP distribution. It is used Tierney Kadane approximation for approximate
Bayes estimation of R. We also compute the asymptotic confidence interval based on EP
records.

The paper is organized as follows: In Section 2, MLE and approximate Bayesian es-
timator under squared loss function based on upper record values are given. It is also
presented asymptotic confidence interval of R in this section. In Section 3, Monte Carlo
simulations are carried out to compare the performances of these estimators in terms of
bias and mean square error (MSE). In Section 4, a real data application is given. Finally,
conclusion is presented in Section 5.

2. Estimation of R based on upper records
2.1. Maximum likelihood estimation of R

In order to compute the MLE of R, we first obtain the MLEs of α1, β1, α2 and β2. Let
XU(1), XU(2), ..., XU(m) are the first m upper records coming from EP (α1, β1). Also, let
YU(1), YU(2), ..., YU(k) are upper record values taken from EP (α2, β2) and are independent
from X-sequence. Then, the likelihood function based on the observed record data is given
(see [8]) as follows:

L (α1, β1, α2, β2|x, y) = f
(
xU(m) |α1, β1

)
f
(
yU(k) |α2, β2

)
×

m−1∏
i=1

f
(
xU(i) : α1, β1

)
1 − F

(
xU(i) : α1, β1

) k−1∏
j=1

f
(
yU(j) : α2, β2

)
1 − F

(
yU(j) : α2, β2

)

=
(

β1
α1

)m

e

1−e

(
xU(m)

α1

)β1


×
(

β2
α2

)k

e

1−e

(
yU(k)

α2

)β2


×
m∏

i=1

(x
U(i)

α1

)β1−1
e

(
xU(i)

α1

)β1 k∏
j=1

(y
U(j)

α2

)β2−1
e

(
y

U(j)
α2

)β2

(2.1)
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where, x = (x1, x2, ..., xm) and y = (y1, y2, ..., yn). From (6), the log-likelihood function is

ℓ (α1, β1, α2, β2|x, y) = log
(
L
(
α1, β1, α2, β2|x, y

))
= m (log β1 − log α1) + 1 − e

(
xU(m)

α1

)β1

+ (β1 − 1)
m∑

i=1
log

(x
U(i)

α1

)
+

m∑
i=1

(x
U(i)

α1

)β1

+k (log β2 − log α2) + 1 − e

(
y

U(k)
α2

)β2

+ (β2 − 1)
k∑

j=1
log

(y
U(j)

α2

)
+

k∑
j=1

(y
U(j)

α2

)β2

. (2.2)

By differentiating partially the log-likelihood function ℓ
(
α1, β1, α2, β2|x, y

)
with respect

to α1, β1, α2 and β2 and then equalizing them to zero, we we obtain the likelihood equations
as

∂ℓ

∂α1
= − m

α1
+ β1

α1

(
xU(m)

α1

)β1

e

(
xU(m)

α1

)β1

− m(β1 − 1)
α1

− β1
α1

m∑
i=1

(
xU(i)
α1

)β1

= 0, (2.3)

∂ℓ

∂β1
= m

β1
−
(

xU(m)
α1

)β1

log
(

xU(m)
α1

)
e

(
xU(m)

α1

)β1

+
m∑

i=1

(
xU(i)
α1

)
+

m∑
i=1

(
xU(i)
α1

)β1

log
(

xU(i)
α1

)
= 0, (2.4)

∂ℓ

∂α2
= − k

α2
+ β2

α2

(
yU(k)
α2

)β2

e

(
yU(k)

α2

)β2

− k(β2 − 1)
α2

− β2
α2

k∑
j=1

(
yU(j)
α2

)β2

= 0, (2.5)

∂ℓ

∂β2
= k

β2
−
(

yU(k)
α2

)β2

log
(

yU(k)
α2

)
e

(
yU(k)

α2

)β2

+
k∑

j=1

(
yU(j)
α2

)
+

k∑
j=1

(
yU(j)
α2

)β2

log
(

yU(j)
α2

)
= 0. (2.6)

Since the likelihood equations do not have explicit forms, the MLEs of α1, β1, α2 and
β2 can be obtained using numerical methods such as Newton Raphson and Nelder-Mead.
By using Eq. (1.5) and invariant property of MLE, we can compute the MLE of R as

R =
∫ ∞

0

β̂2
α̂2

(
y

α̂2

)β̂2−1
exp

( y

α̂2

)β̂2
 exp

1 − e

(
y

α̂2

)β̂2


×

1 − exp

1 − e

(
y

α̂1

)β̂1

 dy. (2.7)
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2.2. Asymptotic confidence interval
In this subsection, we obtain the asymptotic variances and covariances of the MLEs

α̂1,β̂1,α̂2 and β̂2 by entries of the inverse of the observed Fisher information matrix

I−1
(
Θ̂
)

=


−∂2ℓ(Θ|x)

∂α2
1

−∂2ℓ(Θ|x)
∂α1∂α2

−∂2ℓ(Θ|x)
∂α1∂β1

−∂2ℓ(Θ|x)
∂α1∂β2

−∂2ℓ(Θ|x)
∂α2∂α1

−∂2ℓ(Θ|x)
∂α2

2
−∂2ℓ(Θ|x)

∂α2∂β1
−∂2ℓ(Θ|x)

∂α2∂β2

−∂2ℓ(Θ|x)
∂β1∂α1

−∂2ℓ(Θ|x)
∂β1∂α2

−∂2ℓ(Θ|x)
∂β2

1
−∂2ℓ(Θ|x)

∂β1∂β2

−∂2ℓ(Θ|x)
∂β2∂α1

−∂2ℓ(Θ|x)
∂β2∂α2

−∂2ℓ(Θ|x)
∂β2∂β1

−∂2ℓ(Θ|x)
∂β2

2



−1 ∣∣∣∣∣∣∣∣∣∣∣∣∣ (
θ = θ̂

)

=


V ar (α̂1) Cov (α̂1, α̂2) Cov

(
α̂1, β̂1

)
Cov

(
α̂1, β̂2

)
Cov (α̂2, α̂1) V ar (α̂2) Cov

(
α̂2, β̂1

)
Cov

(
α̂2, β̂2

)
Cov

(
β̂1, α̂1

)
Cov

(
β̂1, α̂2

)
V ar

(
β̂1
)

Cov
(
β̂1, β̂2

)
Cov

(
β̂2, α̂1

)
Cov

(
β̂2, α̂2

)
Cov

(
β̂2, β̂1

)
V ar

(
β̂2
)



=


I11 I12 I13 I14
I21 I22 I23 I24
I31 I32 I33 I34
I41 I42 I43 I44


−1

,

where Θ = (α1, β1, α2, β2) and I(Θ) = (Iij(Θ)) for i; j = 1, 2, 3, 4 is the observed Fisher
information matrix. It can be shown that

I11 = − m

α2
1
−

e

(
xU(m)

α1

)β1

β2
1x2

U(m)

α4
1

−
2e

(
xU(m)

α1

)β1

β1xU(m)

α3
1

+(β1 − 1) m

α2
1

+
m∑

i=1

(β1 + 1)
(

xU(i)
α1

)β1
β1

α2
1

 ,

I22 = m

β2
1

− e

(
xU(m)

α1

)β1

log
(

e

(
xU(m)

α1

))2

+
m∑

i=1

((x
U(i)

α1

)β1

+ log
(x

U(i)

α1

)2
)

,

I33 = − k

α2
2
−

e

(
yU(k)

α2

)β2

β2
2y2

U(k)

α4
2

−
2e

(
yU(k)

α2

)β2

β2yU(k)

α3
2

+(β2 − 1) k

α2
2

+
k∑

j=1

(β2 + 1)
(

yU(j)
α2

)β2
β2

α2
2

 ,

I44 = − k

β2
2

− e

(
yU(k)

α2

)β2

log
(

e

(
yU(k)

α2

))2

+
k∑

j=1

((y
U(j)

α2

)β2

+ log
(y

U(j)

α2

)2
)

,

I12 = I21 = I14 = I41 = I34 = I43 = 0,

I13 =
e

(
xU(m)

α1

)β1 (
xU(m)

α1

)β1
β1xU(m)

α2
1

+e

(
xU(m)

α1

)β1
xU(m)

α2
1

− m

α1
−

m∑
i=1


(

xU(i)
α1

)β1 (
β1 log

(
xU(i)

α1

)
− 1

)
α1

 ,

I24 =
e

(
yU(k)

α2

)β2 (
yU(k)

α2

)β2
β2yU(k)

α2
2

+
e

(
yU(k)

α2

)β2

yU(k)

α2
2

− k

α2
−

k∑
j=1


(

yU(j)
α2

)β2 (
β2 log

(
yU(j)

α2

)
− 1

)
α2

 .
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Now, we can obtain the variance of V ar(R̂) using delta method as V ar(R̂) = b′I−1(Θ̂)b
where b′ =

(
∂R
∂α1

, ∂R
∂β1

, ∂R
∂α2

, ∂R
∂β2

)
.

Firstly, it is needed to estimate V ar(R̂) in order to compute the confidence interval of R.
By using the MLEs of α1, β1, α2 and β2, V ar(R̂) can be estimated. Now, the asymptotic
100 (1 − η) % confidence interval of R is obtained as(

R̂ − z1− η
2

√
V ar

(
R̂
)
, R̂ + z1− η

2

√
V ar

(
R̂
))

, (2.8)

where zη is 100 ηth percentile of N(0, 1).

2.3. Bootstrap confidence interval
In this subsection, we present bootstrap confidence interval for R. The percentile boot-

strap (Boot-p) suggested by [16] is a popular bootstrap method. By using Boot-p method,
the estimation of bootstrap confidence interval can be summarized as follows:

Step 1. Generate upper record sample
(
xU(1), xU(2), ..., xU(m)

)
from EP (α1, β1) and(

yU(1), yU(2), ..., yU(k)
)

from EP (α2, β2).
Step 2. Compute R̂MLE

Step 3. Generate a bootstrap sample
(
x∗

U(1), x∗
U(2), ..., x∗

U(m)

)
and

(
y∗

U(1), y∗
U(2), ..., y∗

U(k)

)
by using R̂MLE and upper records. Compute the bootstrap estimate of R, R̂∗

MLE
Step 4. Repeat Step 3 NBOOT times
Step 5. Let F ∗ (x) = P

(
R̂∗

MLE ≤ x
)

be the cdf of R̂∗
MLE . The approximate 100 (1 − η) %

confidence interval for R is given as follows:(
R̂∗

MLEBoot−p

(
η

2

)
, R̂∗

MLEBoot−p

(
1 − η

2

))
where R̂∗

MLEBoot−p = F ∗−1 (x) [7].

2.4. Approximate Bayesian estimation of R

Let XU(1), XU(2), ..., XU(m) and YU(1), YU(2), ..., YU(k) are upper record values taken from
EP (α1, β1) and EP (α2, β2) , respectively. For Bayesian estimation of the parameters, it
is needed to prior distributions for these parameters. We consider independent gamma
priors for α1, β1, α2 and β2 as follows:

π (α1) = ed1
1

Γ (d1)
αd1−1

1 e−α1e1 α1, e1, d1 > 0

π (β1) = ed2
2

Γ (d2)
βd2−1

1 e−β1e2 β1, e2, d2 > 0

π (α2) = ed3
3

Γ (d3)
αd3−1

2 e−α2e3 α2, e3, d3 > 0

π (β2) = ed4
4

Γ (d4)
βd4−1

2 e−β2e4 β2, e4, d4 > 0.

The joint prior and posterior distributions of Θ = (α1, β1, α2, β2) are given as in (2.9) and
(2.10) respectively.
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π (Θ) = π (α1) π (β1) π (α2) π (β2)

= ed1
1 ed2

2 ed3
3 ed4

4
Γ (d1) Γ (d2) Γ (d3) Γ (d4)

αd1−1
1 βd2−1

1 αd3−1
2 βd4−1

2

×e−(α1e1+β1e2+α2e3+β2e4) (2.9)

π (Θ|x, y) = f (x, y|Θ) π (Θ)
fx (x) fy (y)

= w (x, y; Θ) t (Θ)∫∞
0
∫∞

0
∫∞

0
∫∞

0 w (x, y; Θ) t (Θ) dΘ
, (2.10)

where dΘ = dα1dβ1dα2dβ2,

w (x, y; Θ) =
(

β1
α1

)m

e

1−e

(
xU(m)

α1

)β1


m∏
i=1

(
xU(i)
α1

)β1−1
e

(
xU(i)

α1

)β1

×
(

β2
α2

)k

e

1−e

(
yU(k)

α2

)β2


k∏
j=1

(
yU(j)
α2

)β2−1
e

(
yU(j)

α2

)β2

t (Θ) = αd1−1
1 βd2−1

1 αd3−1
2 βd4−1

2 e−(α1e1+β1e2+α2e3+β2e4).

In this case, Bayes estimator for u (Θ|x, y) under squared loss function is as follows;

ûb (Θ) = E [u (Θ|x, y)]

=
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
u (Θ |x, y) π (Θ|x, y) dΘ

=
∫∞

0
∫∞

0
∫∞

0
∫∞

0 u (Θ|x, y) v (α1, β1, α2, β2|x, y) dθ∫∞
0
∫∞

0
∫∞

0
∫∞

0 v (Θ|x, y) dΘ
,

where v (Θ|x, y) = e[ℓ(Θ|x,y)+ρ(Θ|textbfx,y)], ℓ (Θ|x, y) is log-likelihood function and ρ (Θ|x, y)

is logarithm of joint prior distribution. It is difficult to solve the above equation in closed-
form. For solution of this equation, some approximate methods are used. One of these
methods is Tierney Kadane’s approximation. In the following, we consider the Tierney
Kadane’s approximation for the solution of aboved equation.

2.5. Bayes estimation with Tierney Kadane’s method
Tierney and Kadane’s approximation is also known as Laplace approach. This approx-

imation is an important method which is used in asymptotic expansion of integrals. This
approximation method suggested by [38] has been studied by many authors such as [17],
[18], [21], [27], [33] and [34] for finding integral ratios in Bayes analysis. Tierney and
Kadane approximation for case with two parameters can be summarized as follows:

I (Θ) = 1
m + k

{ρ (Θ|x, y) + ℓ (Θ|x, y)} ,

I∗ (Θ) = 1
m + k

{log u (Θ|x, y)} + I (Θ|x, y) ,
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where u (Θ|x, y) is any functions of Θ = (α1, β1, α2, β2), ℓ (Θ|x, y) is log-likelihood function
and ρ (Θ|x, y) is logarithm of joint prior distribution. For Θ = (α1, β1, α2, β2), Tierney
Kadane Bayes estimator of u (Θ) under squared error loss function is defined as follows:

ûb (Θ) = E [u (Θ) |x, y] =
∫∞

0 enI∗(Θ)d (Θ)∫∞
0 enI(Θ)d (Θ)

=
(det Σ∗

det Σ

) 1
2

exp
[
n
(
I∗
(
Θ̂I∗

)
− I

(
Θ̂I

))]
where

(
Θ̂I∗

)
and

(
Θ̂I

)
maximize I∗

(
Θ̂I∗

)
and I

(
Θ̂I

)
, respectively. Σ∗ and Σ are minus

the inverse Hessians of I∗ (Θ) and I (Θ) at
(
θ̂I∗

)
and

(
Θ̂I

)
, respectively. u (Θ) is replaced

by R̂, It is obtained Bayes estimation for R.

3. Simulation study
In this section, a Monte-Carlo simulation study is taken place to investigate the perfor-

mances of MLE and Bayes estimators of R. These estimators are compared according to
the bias and MSE. We describe the following algorithm to generate upper record values
from EP distribution.

1. Generate the random sample of n sizes T1, T2, . . . , Tn from the U (0, 1) distribution.
2. Generate the random sample of n sizes Z1, Z2, . . . , Zn from the from standard expo-
nential distribution by using the transformation Zi = − ln (1 − Ti).
3. The ith upper record value from the standard exponential distribution is obtained by
using the transformation Yi = Z1 + Z2 + · · · + Zi.
4. The ith upper record value taken from U (0, 1) distribution is obtained with Ui = 1−e−Yi

5. The ith upper record value from EP distribution is obtained by using the inverse trans-
formation XU(i) = F −1

EP (Ui) , i = 1, 2, ...n. Thus, we generate n upper records from EP
distribution via this algorithm.

By using the above method, we have generated the records XU(1), XU(2), ..., XU(m)
and YU(1), YU(2), ..., YU(k) from the EP (α1, β1) and EP (α2, β2) distributions, respectively.
Based on the generated record samples, we computed the MLE and Bayes estimators of
R as described in Section 2. Then, we computed the average biases and MSEs of the
these estimators of R based on 1000 repetitions. Table 1 provides the MLE and Bayesian
estimates of R. The average bias and MSE of the estimators are given in Table 2. The
interval estimation results of the simulation study are presented in Table 3. In this simu-
lation study, we considered NBOOT = 300 for bootstrap estimation. For Bayes analysis,
we used the Gamma distribution as the prior distribution with three priors as follows:

Prior 1: d1 = 1, e1 = 2; d2 = 2, e2 = 3; d3 = 1, e3 = 3; d4 = 1, e4 = 4.
Prior 2: d1 = 1.5, e1 = 1; d2 = 2.5, e2 = 1.5; d3 = 2, e3 = 1; d4 = 4, e4 = 2.
Prior 3: d1 = e1 = d2 = e2 = d3 = e3 = d4 = e4 = 0.0001.

The parameter settings are given by

Case 1: α1 = 0.2, β1 = 0.4; α2 = 0.2, β2 = 0.3.
Case 2: α1 = 0.2, β1 = 0.3; α2 = 0.2, β2 = 0.4.
Case 3: α1 = 0.1, β1 = 0.4; α2 = 0.2, β2 = 0.4.
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Table 1. MLE and Bayesian Estimates of R

R R̂MLE R̂BAY ES

Parameters (n,k) prior 1 prior 2 prior 3
(10,10) 0.530 0.267 0.293 0.229

Case 1 (15,10) 0.400 0.530 0.3181 0.368 0.303
(15,15) 0.456 0.335 0.32 0.322
(10,10) 0.556 0.249 0.27 0.172

Case 2 (15,10) 0.485 0.570 0.313 0.365 0.252
(15,15) 0.534 0.336 0.316 0.266
(10,10) 0.639 0.3686 0.537 0.368

Case 3 (15,10) 0.536 0.645 0.4187 0.591 0.454
(15,15) 0.609 0.4514 0.525 0.479

Table 2. The biases and MSEs of MLE and Bayesian Estimators of R

R̂MLE R̂BAY ES

prior 1 prior 2 prior 3
Case (n, k) Bias MSE Bias MSE Bias MSE Bias MSE

(10, 10) 0.129 0.033 -0.133 0.020 -0.107 0.020 -0.171 0.033
1 (15, 10) 0.130 0.032 -0.082 0.010 -0.032 0.011 -0.097 0.015

(15, 15) 0.056 0.019 -0.065 0.007 -0.080 0.011 -0.078 0.011
(10, 10) 0.071 0.034 -0.235 0.058 -0.215 0.064 -0.313 0.104

2 (15, 10) 0.085 0.029 -0.171 0.033 -0.120 0.031 -0.233 0.062
(15, 15) 0.049 0.029 -0.148 0.025 -0.169 0.039 -0.219 0.054
(10, 10) 0.103 0.027 -0.167 0.034 0.001 0.026 -0.168 0.041

3 (15, 10) 0.109 0.024 -0.117 0.021 0.055 0.026 -0.082 0.022
(15, 15) 0.073 0.023 -0.085 0.013 -0.011 0.018 -0.057 0.014

Table 3. The lengths and CPs of MLEs of R

RMLE RMLE*
Parameters (n,k) Length CP Length CP

(10,10) 0.676 0.913 0.682 0.997
Case 1 (15,10) 0.650 0.911 0.648 0.994

(15,15) 0.527 0.902 0.501 0.982
(10,10) 0.782 0.917 0.881 0.998

Case 2 (15,10) 0.749 0.934 0.845 0.998
(15,15) 0.667 0.877 0.717 0.987
(10,10) 0.720 0.947 0.822 0.999

Case 3 (15,10) 0.692 0.955 0.786 0.996
(15,15) 0.592 0.888 0.646 0.981

CP: Coverage probability.

According to Table 1, as the number of records increases MSEs and biases of the MLEs
of R decreases as expected. From Table 2, it can be concluded that the performances of
Bayes estimators are better than MLEs in terms of MSE criterion. In this Monte Carlo
simulation study, it is seen that the best choice is prior 1 among used three priors for
Bayesian estimation. It provides the smallest bias and MSE in most cases considered.
Prior 2 is the second best prior and Prior 3 is the worst among three priors. Table 3 shows
that the estimation of approximate bootstrap interval is closer to 0.95 than the asymptotic
confidence interval estimation.

4. Real data analysis
In this section, we provide a numerical example to illustrate the use of examined meth-

ods of estimation. Crowder [14] considered data sets representing the times to failure of
steel specimens subjected to cyclic stress loading of various amplitudes. The data are for
20 specimens at each of the 14 stress amplitudes: 32.0, 32.5, 33.0, · · · , 38.0, 38.5. These
data are taken from [24] (Page 574). Here, we analyze the data for 33.0 (Data Set 1) and
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32.0 (Data Set 2) stress amplitudes, which are divided by 1000. The data set 1 and data
set 2 are independent. The data are presented as follows:

Data Set 1 (The level of stress: 33): 0.184, 0.241, 0.273, 1.842, 0.371, 0.830, 0.683,
1.306, 0.562, 0.166, 0.981, 1.867, 0.493, 0.418, 2.978, 1.463, 2.220, 0.312, 0.251, 0.076,

Data Set 2 (The level of stress: 32): 1.144, 0.231, 0.523, 0.474, 4.510, 3.107, 0.815,
6.297, 1.580, 0.605, 1.786, 0.206, 1.943, 0.935, 0.283, 1.336, 0.727, 0.370, 1.056, 0.413,
0.619, 2.214, 1.826, 0.597.

We interested in estimating the stress-strength parameter R = Pr(X < Y ) where X
and Y denote the amount of the times to failure of steel specimens in data set 1 and 2,
respectively. First, we check to see whether the EP distribution is adequate to fit these
data sets or not.

For two data sets, the MLEs and their standard errors (in parentheses) of EP distribu-
tion parameters, Kolmogorov-Smirnov (K-S) statistics and relevant p values are given in
Table 4.

Table 4. The MLEs(standard errors), K-S distances and their p-values

α̂ β̂ K-S p-value
Data Set 1 1.6113(0.2724) 0.8220(0.1540) 0.1427 0.7585
Data Set 2 2.7265(0.4698) 0.7435(0.1183) 0.1460 0.6334

From Table 4, it is clear that the EP distribution fits quite well to both data sets.
Moreover, Figures 1-2 illustrate the fitted density functions and fitted cdfs. Thus, it can
be easily assess fits of EP distribution to both data sets. It can be concluded that the EP
distribution fits the current data sets according to the results of K-S tests.

Data Set 1

x

de
ns

ity

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data Set 1

x

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

Figure 1. Estimated densities and empirical and estimated cdf in data set 1

From the whole sequence of data, the observed upper record values are obtained as
follows:

xU(i): 0.184, 0.241, 0.273, 1.842, 1.867, 2.978

yU(i): 1.144, 4.510, 6.297
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Figure 2. Estimated densities and empirical and estimated cdf in data set 2

Thus, based on these upper record data, we obtain the MLE of R as R̂MLE = 0.855
and the asymptotic 95 % confidence interval of R as (0.7636, 0.9464). Also, we compute
the MLE of R based on boostrap method as R̂∗

MLE = 0.596 and the boostrap 95 % con-
fidence interval of R as (0.4919, 0.6596). The Bayes estimate of R is R̂BAY ES = 0.8568.
Note that for computing Bayes estimate, since we dont have any prior information, we
used very small (close to zero) values of the hyper-parameters, i.e., d1 = e1 = d2 = e2 =
d3 = e3 = d4 = e4 = 0.0001. Therefore, in this case, the priors are proper priors but they
are almost improper. We obtain the MLE of R as R̂MLE = 0.6169 based on complete
sample. It can be concluded that the boostrap estimate based on upper records is very
close estimate based on complete sample.

5. Conclusion
In this paper, we considered MLE and Bayes estimatior of R = Pr(X < Y ) based on

upper record values when X and Y are two independent EP random variables with (α1, β1)
and (α2, β2) parameters. We obtained asymptotic confidence interval of R. Since the Bayes
estimates cannot be obtained in closed form, we used Tierney kadane approximation to
compute the Bayes estimate of R under squared loss function based on the independent
gamma priors. We provided a real data analysis in the problem of estimation based on
upper record values for EP distribution. Monte Carlo simulation study is used to evaluate
the performance of MLE and Bayes estimators. Based on the simulation results, it is
observed that the Bayes estimator under Prior 1 works better that the MLE and Bayes
estimators under Priors 2 and 3. Also, the results of the simulation study shows that the
approximate bootstrap interval is closer to 0.95 than the asymptotic confidence interval
estimation.
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