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Abstract: This study deals with modelling the performance of an R134a automobile air conditioning (AAC) system 

by means of adaptive neuro-fuzzy inference system (ANFIS) approach. In order to gather data for developing the 

ANFIS model, an experimental AAC system employing a variable capacity swash plate compressor and a thermostatic 

expansion valve was set up and equipped with various instruments for mechanical measurements. The system was 

operated at steady state conditions while varying the compressor speed, dry bulb temperatures and relative humidity of 

the air streams entering the evaporator and condenser as well as the mean velocities of these air streams. Then, 

utilizing some of the experimental data, an ANFIS model for the system was developed. The model was used for 

predicting various performance parameters of the system including the air dry bulb temperature at the evaporator 

outlet, cooling capacity, coefficient of performance and the rate of total exergy destruction in the refrigeration circuit 

of the system. It was determined that the predictions usually agreed well with the experimental results with correlation 

coefficients in the range of 0.966–0.988 and mean relative errors in the range of 0.23–5.28%. The results reveal that 

the ANFIS approach can be used successfully for predicting the performance of AAC systems. 
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OTOMOTİV İKLİMLENDİRME SİSTEMİNİN ANFIS YAKLAŞIMI KULLANILARAK 

MODELLENMESİ 
 

Özet: Bu çalışmada, R134a soğutucu akışkanı kullanan bir otomobil iklimlendirme sisteminin performansının ANFIS 

yaklaşımı ile modellenmesi yapılmıştır. Sistemin ANFIS modelinin geliştirilmesi için, eğik plakalı değişken kapasiteli 

kompresör ile termostatik genleşme valfi kullanan bir deneysel otomobil iklimlendirme sistemi kurulmuş ve çeşitli 

mekanik ölçüm cihazlarıyla donatılmıştır. Sistem, kompresör devri ile buharlaştırıcı ve yoğuşturucuya giren hava 

akımlarının kuru termometre sıcaklıkları, izafi nemleri ve ortalama hızları değiştirilerek, sürekli rejim şartları altında 

çalıştırılmıştır. Deneysel verilerin bir kısmının kullanılmasıyla, sistem için bir ANFIS modeli geliştirilmiştir. Bu 

model, buharlaştırıcı çıkışındaki hava akımı kuru termometre sıcaklığı, soğutma kapasitesi, soğutma tesir katsayısı ve 

sistemin soğutma devresinde birim zamanda yok edilen toplam ekserji gibi çeşitli performans parametrelerinin tahmin 

edilmesinde kullanılmıştır. Model tahminlerinin deneysel sonuçlar ile genellikle iyi bir uyum göstererek, 0.966–0.988 

arasında değişen korelasyon katsayıları ve % 0.23–5.28 arasında değişen ortalama izafi hatalar verdiği belirlenmiştir. 

Ulaşılan sonuçlar, ANFIS yaklaşımının otomotiv iklimlendirme sistemlerinin performansının tahmininde başarılı 

olarak kullanılabileceğini göstermiştir.  

Anahtar Kelimeler: İklimlendirme, Otomotiv, Soğutma, ANFIS, R134a. 
 

NOMENCLATURE 

 

AAC  Automotive air conditioning 

ANFIS    Adaptive neuro-fuzzy inference system 

ANN  Artificial neural network 

CFC  Chlorofluorocarbon 

COP  Coefficient of performance 

dE   Rate of exergy destruction [W] 

h   Specific enthalpy [kJ kg
 –1

] 

fh   Specific enthalpy of the condansate [kJ kg
 –1

] 

gh   Specific enthalpy of the water vapour [kJ kg
 –1

] 

m   Mass flow rate [g s
 –1

] 

MRE  Mean relative error 

compn   Compressor speed [rpm] 

evapQ   Evaporator cooling capacity [W] 

r  Correlation coefficient 
2R   Absolute fraction of variance 

Rh  Relative humidity [%] 

RMSE   Root mean square error 
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s   Specific entropy [kJ kg
–1

 K
 –1

] 

T   Temperature [K] 

0T   Ambient temperature [K] 

TXV  Thermostatic expansion valve 

mV   Mean air velocity [m s
 –1

] 

compW   Compressor power [W] 

 

Greek Symbols 

   Relative humidity [%] 

   Specific humidity  

 

Subscripts 

a  Air 

A...F  Points in the air lines as shown in Figure 1  

ai  Air inlet 

ao  Air outlet   

comp  Compressor 

cond  Condenser 

dis  Compressor discharge 

evap  Evaporator 

r  Refrigerant 

tot  Total 

valve  Expansion valve 

 

INTRODUCTION 

 

Automotive air conditioning (AAC) systems have been 

advanced considerably to provide better thermal comfort 

and improved fuel economy along with minimum impact 

to the environment since General Motors and Packard 

Motor Car companies developed early AAC systems 

based on vapour compression refrigeration in 1930s 

(Bhatti, 1999a). Although AAC systems once used R12 

as a standard refrigerant, beginning in 1992, car 

manufacturers started to use R134a as a result of 

Montreal Protocol, which called for a phase out of CFC 

compounds including R12. On the other hand, triggered 

by the regulations of the European Union that require all 

new vehicles receiving type approval in 2011 or later to 

use a refrigerant with a Global Warming Potential below 

150, automotive industry is now performing research to 

use natural refrigerants such as CO2 to substitute for 

R134a in AAC systems.  

 

AAC systems are different from domestic air 

conditioning systems in a few ways. Because the 

compressor of an AAC system is driven by the engine, 

the compressor speed as well as the cooling capacity of 

the system changes as a function of the engine speeds. 

On the other hand, the passenger compartment of a 

vehicle can be exposed to varying climatic conditions, 

which changes the air conditioning load continually. 

Consequently, these challenges make AAC systems 

difficult to model using classical techniques and 

necessitate experimental studies. 

 

The literature contains limited number of research 

studies on AAC technology due to its competitive 

nature. In response to the Montreal Protocol, some 

studies were evaluated the performance of AAC systems 

with refrigerants alternative to R12. Jung et al. (1999) 

presented experimental performance of 

supplementary/retrofit refrigerant mixtures for R12 used 

in existing AAC systems. Al-Rabghi and Niyaz (2002) 

found that the AAC system with R12 yields a higher 

coefficient of performance (COP) by 23% than the 

system with R134a. Joudi et al. (2003) simulated the 

performance of an ideal AAC system with R12 and 

several alternative refrigerants including some 

hydrocarbons. Bhattti (1999b) presented a method for 

augmentation of AAC systems with R134a to lower its 

global warming impact. Brown et al. (2002) evaluated 

various performance parameters of AAC systems with 

CO2 and R134a, finding that both systems offer 

comparable performance. Liu et al. (2005) investigated 

experimental performance of an AAC system with CO2. 

Ghodbane (1999) simulated the performance of AAC 

systems using several hydrocarbon refrigerants. 

Kaynakli and Horuz (2003) investigated experimental 

performance of an AAC system with R134a to find 

optimum operating conditions. Wongwises et al. (2006) 

determined experimental performance of an AAC 

system with several hydrocarbons. Hosoz and Direk 

(2006) investigated experimental performance of an 

R134a AAC and air-to-air heat pump system. Alkan and 

Hosoz (2010a) compared experimental performance 

parameters of an R134a AAC system for the cases of 

using fixed and variable capacity compressors. They 

also presented comparative experimental performance of 

an R134a AAC system for two different types of 

expansion devices, namely thermostatic expansion valve 

and orifice tube (Alkan and Hosoz, 2010b).   

 

In addition to the experimental studies, the 

performances of AAC systems were simulated. Lee and 

Yoo (2000) developed a simulation model for an AAC 

system by combining the performance analysis models 

for the components. Jabardo et al. (2002) presented a 

steady-state simulation model for an AAC system using 

a variable capacity compressor, and indicated its validity 

on an experimental unit. Tian and Li (2005) simulated 

steady-state performance of an R134a AAC system 

employing a variable capacity compressor. Hosoz and 

Ertunc (2006) developed an artificial neural network 

model to predict the performance of an AAC system 

with R134a.  

 

It is obvious that mathematical modelling of AAC 

systems require a large number of geometrical 

parameters defining the system, which may not be 

readily available, and the computer simulations 

employed in these models are usually complicated due 

to their dealing with the solution of complex differential 

equations. Furthermore, as mentioned before, changing 

compressor speed and air conditioning load make the 

modelling process more complex. Alternatively, the 

operation of AAC systems can be modelled using 

artificial intelligence techniques such as artificial neural 

network (ANN) and adaptive neuro-fuzzy inference 
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system (ANFIS) with significantly less engineering 

effort. The main feature of these new techniques is the 

ability of self learning and self-predicting some desired 

outputs. These techniques can extract expertise from 

data without requiring any explicit mathematical 

representation, thus easily modelling the physical 

phenomena in complex systems to predict their 

behaviour under given conditions. Therefore, they can 

be applied to various engineering problems which are 

too complex to deal with using classical modelling 

techniques.  

 

ANFIS, the less-known approach compared with ANN, 

is a soft computing technique that combines the benefits 

of feed forward calculation of output and back 

propagation of learning capability of ANNs and human-

like reasoning style of fuzzy logic. Therefore, ANFIS 

based models are very powerful universal approximators 

with the ability of interpretable IF-THEN rules, and they 

are applied in many fields such as system identification, 

fuzzy control, data processing, etc. 

 

The ANN modelling of air conditioning and 

refrigeration systems has been studied by many 

investigators. However, the application of ANFIS 

approach to the modelling of thermal systems is a more 

recent progress, although ANFIS was first introduced in 

early 90s (Jang, 1993). Hasiloglu et al. (2004) 

performed ANFIS modelling of the transient heat 

transfer in circular duct flow. Esen et al. (2007) 

predicted the performance of a ground-coupled heat 

pump system using ANFIS. They also compared the 

ANFIS predictions with the ANN ones for the ground-

coupled heat pump system (Esen et al., 2008). Ertunc 

and Hosoz (2008) developed ANFIS and ANN models 

for predicting the performance of an evaporative 

condenser. They found that the accuracies of ANFIS 

predictions were slightly better than those of ANN ones. 

Soyguder and Alli (2009) predicted the fan speed for 

energy saving in an HVAC system using ANFIS. Das 

and Kishor (2009) developed an ANFIS model for 

predicting the heat transfer coefficient in pool boiling of 

distilled water. Ata and Kocyigit (2010) used ANFIS to 

predict the tip speed ratio in wind turbines. Hosoz et al. 

(2011) investigated the applicability of ANFIS to 

predict the performance of an R134a vapor-compression 

refrigeration system using a cooling tower for heat 

rejection. They found that  the ANFIS approach can be 

used successfully for predicting the performance of 

refrigeration systems. 

 

As can be seen from the literature survey outlined 

above, the performance of AAC systems has not been 

modelled yet using ANFIS approach. However, previous 

studies report that the predictions of ANFIS approach 

are usually slightly better than those of ANN, the other  

alternative artificial intelligence technique, for 

refrigeration and air conditioning systems (Ertunc and 

Hosoz, 2008; Esen and Inalli, 2010). Therefore, this 

study investigates the applicability and reliability of 

ANFIS modelling to predict various performance 

parameters of an AAC system. For this aim, an 

experimental R134a AAC system with a variable 

capacity compressor has been set up and tested under a 

broad range of operating conditions. Then, using 

experimental data, its performance parameters have 

been evaluated, and an ANFIS model for the prediction 

of the performance parameters of the AAC system has 

been developed. Finally, the model results have been 

compared with experimental ones for determining the 

performance of the ANFIS predictions.  

 

DESCRIPTION OF THE EXPERIMENTAL AAC 

SYSTEM AND TESTING PROCEDURE 

 

The ANFIS approach has been applied to the 

experimental AAC system shown in Figure 1. The 

experimental AAC system mainly consists of the 

original components from a compact size R134a 

automobile air conditioning system, namely a five-

cylinder wobble-plate variable capacity compressor with 

a swept volume of 9.8–151 cc/rev,  a parallel-flow 

micro-channel condenser, a liquid receiver/filter/drier, 

an internally-equilized thermostatic expansion valve and 

a laminated type evaporator. The experimental system 

also has some auxiliary equipment, which is used for 

providing the required test conditions and some 

instruments for mechanical measurements.  

 

As seen in Figure 1, the evaporator and condenser were 

inserted into two separate air ducts. The evaporator and 

condenser air ducts have cross-section areas of 0.048 m
2
 

and 0.219 m
2
, respectively, while they have the same 

length of 1 m. In order to provide the required air 

streams in these ducts, a centrifugal fan and an axial fan 

were placed at the entrances of the evaporator and 

condenser ducts, respectively. Because these fans are 

driven by DC motors, the air flow rates passing through 

the evaporator and condenser can be adjusted to the 

required values by varying the voltages across the fan 

motors via voltage regulators. These ducts also contain 

electric heaters located upstream of the evaporator and 

condenser. The evaporator and condenser electric 

heaters can be controlled between 0–1.8 kW and 0–5.6 

kW, respectively, to provide the required air  

temperatures at the inlets of the related coils. Both air 

ducts were insulated with polyurethane foam of 3 cm 

thick.   

 

The compressor was belt-driven by a three-phase 4 kW 

electric motor. In order to ensure that the compressor 

could be operated at any required speed, the electric 

motor was energized through a frequency inverter. 

Because the employed compressor was a variable 

capacity one and the experimental system was not 

equipped with a thermostat in order to test the system in 

steady-state operation without interruption, the 

compressor of the experimental AAC system operated 

continually until the end of the each test.  
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Figure 1.  Schematic diagram of the experimental AAC system. 
  

The refrigerant lines of the system were made from 

copper tubing with internal diameters equal to those of 

the original rubber hoses, and insulated by elastomeric 

material. The refrigeration circuit was charged with 800 

g of R134a. 

 

Figure 1 also indicates the locations and types of the 

measurements performed on the system. The refrigerant 

temperatures at the inlet and outlet of each component 

were measured by type K thermocouples soldered to the 

refrigeration lines. The dry bulb temperatures and 

relative humidities of the air streams at the inlet and 

outlet of the evaporator and condenser were also 

measured. The measurements at the evaporator outlet 

were performed at four locations, and the results were 

averaged. The suction and discharge pressures were 

measured by Bourdon tube gauges. It was assumed that 

the evaporating and condensing pressures were equal to 

the measured suction and discharge pressures, 

respectively. The compressor speed was measured by an 

optic tachometer. The air velocity at the outlet of the 

evaporator was measured at four uniformly-distributed 

locations by an anemometer, while the air velocity at the 

outlet of the condenser was measured at six uniformly-

distributed locations. The air mass flow rates passing 

through the evaporator and condenser were determined 

by evaluating the average air velocities, air densities and 

duct flow areas in the continuity equation.  

 

In the experiments, totally 70 different steady state test 

runs were performed to acquire data for the ANFIS 

modelling of the system. The inputs varied in the tests 

were the compressor speed, dry bulb temperature and 

relative humidity of the air stream entering the evaporator, 

dry bulb temperature of the air stream entering the 

condenser together with average air velocities at the 

outlets of the evaporator and condenser. The ranges of 

these inputs are shown in Table 1. It was assumed that the 

steady-state was achieved when the temperature 

deviations at the key points considered were lower than 

0.5°C for 5 minutes. As soon as the stabilized conditions 

were occurred, data were collected to evaluate the 

performance of the system.  

 
Table 1. Range of the inputs in the experiments. 

Compressor speed ( compn , rpm) 750−1500  

Dry bulb temperature of the air stream 

entering the evaporator ( aievapT , , °C ) 

23.3−40.0  

Relative humidity of the air stream 

entering the evaporator ( aievap, ) 

16−55% 

Dry bulb temperature of the air stream 

entering the condenser ( aicondT , , °C) 

23.3−40.0  

Average air velocity at the evaporator 

outlet ( evapmV , , m s
−1

) 

1.0−3.2  

Average air velocity at the condenser 

outlet ( condmV , , m s
−1

) ) 

0.4−4.2  

 

THERMODYNAMIC ANALYSIS 

 

Using the first law of thermodynamics, the cooling 

capacity of the experimental AAC system can be related 

to the heat taken from the air stream passing through the 

evaporator as given below.  

 

   fCBaCgaBgaaevap hmhhhhmQ )()()(        (1)  

 

As seen in Eq. (1), the cooling capacity is a function of 

the air mass flow rate, specific enthalpies of the moist 

air at the inlet and outlet of the evaporator, and enthalpy 

of the condensate leaving the evaporator.  

 

Then, the refrigerant mass flow rate can be evaluated 

from  
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With the assumption of adiabatic compressor, the power 

absorbed by the refrigerant in the compressor can be 

calculated from  

 

)( 12 hhmW rcomp                                  (3) 

 

The energetic performance of the AAC system can be 

found by evaluating its coefficient of performance, 

which is the ratio of the cooling capacity to the 

compressor power, i.e. 

 

compevap WQCOP                                 (4)                                                                                      

 

The exergy destruction in the adiabatic compressor, 

which is due to gas friction, mechanical friction of the 

moving parts and internal heat transfer, can be 

determined from 

 

)( 120, ssTmE rcompd                   (5)

     

where 
0T  is the environmental temperature representing 

the dead state.  

 

The rate of exergy destruction in the condenser and 

liquid line, which is mainly due to the heat transfer 

originating from the temperature difference between the 

air and refrigerant streams, can be obtained from 
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With the assumption of adiabatic expansion, the exergy 

destruction in the expansion valve, which is due to the 

refrigerant friction accompanying the expansion across 

the valve, can be evaluated from 

)( 560, ssTmE rvalved                   (7)

                          

The rate of exergy destruction in the evaporator, which 

mainly stems from the temperature difference between 

the refrigerant and air streams, can be determined from  
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
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B

revapd
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ssTmE 67
670,

                (8) 

Finally, the total rate of exergy destruction in the 

refrigeration circuit of the system can be found by 

summing up the individual destructions, i.e. 

 

evapdvalvedconddcompdtotd EEEEE ,,,,,
                 (9) 

 

 

 

 

MODELLING OF THE EXPERIMENTAL AAC 

SYSTEM WITH ANFIS 

 

In order to develop an ANFIS model for the 

experimental AAC system, the available data set, which 

consists of 70 input vectors and their corresponding 

output vectors from the experimental work, was divided 

into training and test sets. While 50 vectors of the data 

set were randomly assigned as the training set, the 

remaining 20 vectors were employed for testing the 

performance of the ANFIS predictions.  

 

The output parameters of the experimental AAC system 

depends on six input parameters, namely the compressor 

speed ( compn ), dry bulb temperature (
aievapT ,

) and 

relative humidity ( aievap, ) of the air stream entering the 

evaporator, dry bulb temperature of the air stream 

entering the condenser ( aicondT , ) and the mean air 

velocities at the evaporator and condenser outlets 

( evapmV ,  and condmV , , respectively). The values of these 

input parameters used in 20 test vectors are reported in 

Table 2. 

 

On the other hand, the considered output parameters of 

the experimental AAC system are the air dry bulb 

temperature at the evaporator outlet ( aoevapT , ), cooling 

capacity (
evapQ ), compressor power (

compW ), coefficient 

of performance ( COP ), total rate of exergy destruction 

in the refrigeration circuit of the system ( totdE ,
 ) and 

compressor discharge temperature ( disT ).  

 

The ANFIS model was developed using MATLAB 

Fuzzy Logic Toolbox (2002). In this model, a 

subtractive fuzzy clustering was generated to establish a 

rule base relationship between the input and output 

parameters. Each input variable, which varies within a 

range, are clustered into several cluster values in Layer 

1 of the ANFIS architecture given in Jang (1993) to 

build up fuzzy rules, and each fuzzy rule is associated 

with several parameters of membership functions in 

Layer 2 of the ANFIS architecture. As the number of 

rules is increased, the number of parameters of the 

membership functions increases as well. Therefore, the 

data was divided into groups called as clusters using the 

subtractive clustering method to generate fuzzy 

inference system. Since the subtractive fuzzy clustering 

can automatically determine the number of clusters, the 

Sugeno-type fuzzy inference system was implemented to 

obtain a concise representation of a system's behaviour 

with a minimum number of rules. The linear least square 

estimation was used to determine each rule’s consequent 

equation. The fuzzy c-means was used as a data 

clustering technique wherein each data point belongs to 

a cluster to some degree that is specified by a 

membership grade. Therefore, a radius value was given 

in the MATLAB program to specify the cluster center’s 

range of influence to all data dimensions of both input 
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Table 2. Input variables of the ANFIS predictions. 

Test 

vector 

no. 

compn  

(rpm) 

aievapT ,  

(°C) 

aievap,     

(%) 

aicondT ,     

(°C) 

evapmV ,    

(m s
−1

) 

condmV ,    

(m s
−1

) 

1 750 35.0 16 35.0 3.0 2.80 

2 1000 35.0 16 40.0 3.0 2.80 

3 750 40.0 16 40.0 3.0 2.80 

4 1500 35.0 16 35.0 3.0 1.40 

5 1000 35.0 16 35.0 3.0 2.80 

6 1000 35.0 16 35.0 1.5 2.80 

7 1000 23.3 26 23.3 3.0 0.84 

8 1500 23.3 26 23.3 3.0 0.65 

9 1000 27.7 55 27.7 3.0 0.78 

10 1000 27.7 55 27.7 1.0 0.57 

11 750 27.7 55 27.7 2.0 0.89 

12 1000 27.7 55 27.7 2.0 1.04 

13 750 27.7 55 27.7 3.0 0.73 

14 750 27.7 55 27.7 2.0 0.66 

15 750 27.7 55 27.7 1.0 0.64 

16 1000 27.7 55 27.7 2.0 0.85 

17 1500 27.7 55 27.7 2.0 0.84 

18 1250 27.7 55 27.7 2.0 1.14 

19 1500 27.7 55 27.7 2.0 1.25 

20 1250 27.7 55 27.7 3.0 1.00 

 

 

and output. In other words, that radius defines the 

neighbourhood of a cluster centre. If the cluster radius is 

specified a small number, then there will be many small 

clusters in the data that results in many rules. In contrast,

specifying a large cluster radius will yield a few large 

clusters in the data resulting in fewer rules. In this study, 

by trial and error, the best cluster radius was determined 

as 1.5. The system parameters of the developed ANFIS 

model are given in Table 3. As seen in this table, the 

subtractive fuzzy clustering does significantly reduce the 

number of rules, which is 2. 
 

Table 3. System parameters of the ANFIS model. 

Number of nodes 37 

Number of linear parameters 14 

Number of nonlinear parameters 24 

Total number of parameters 38 

Number of training data pairs 46 

Number of fuzzy rules 2 

 

The neuro-fuzzy algorithm should be trained using a 

proper set of training data so that the outputs can be 

estimated based on the input-output data. Therefore, the 

data was trained to identify the parameters of Sugeno-

type  fuzzy  inference system  based  on the  hybrid 

algorithm combining the least square method and the 

backpropagation gradient descent method. After 

training, fuzzy inference calculations of the developed 

model were performed. Then, the input vectors from the 

test data set were presented to the trained network and 

the responses of the network, i.e. the predicted output 

parameters, were compared with the experimental ones 

for the performance measurement. The criterions used 

for measuring the network performance were the 

correlation coefficient (r), mean relative error (MRE), 

root mean square error (RMSE) and absolute fraction of 

variance (R
2
). Detailed definitions of these criterions 

can be found in Hosoz and Ertunc (2006), and Ertunc 

and Hosoz (2008).   

 

RESULTS AND DISCUSSION 

 

The predictions of the developed ANFIS for the 

performance parameters of the AAC system as a 

function of the experimentally determined values are 

shown in Figures. 2–7. Note that the comparisons in all 

graphics were made using values only from the test data 

set, which was not introduced to the ANFIS during the 

training process. In order to assess the accuracy of 

ANFIS predictions, each graphic is provided with a 

straight line indicating perfect prediction and with an 

error band of either ±2% or ±10%.   

 

As seen in Figure 2, the ANFIS predictions for the air 

dry bulb temperature at the evaporator outlet result in a 

mean relative error (MRE) of 0.23%, a root mean square 

error (RMSE) of 0.83 K, a correlation coefficient (r) of 

0.968 and an absolute fraction of variance (R
2
) of 

0.9999 with the experimental data. These results 

demonstrate that the ANFIS predicts Tevap,ao excellently, 

although the tests for acquiring data were not performed 

in a broad range of  operating conditions.  

 

As shown in Figure 3, the ANFIS predictions for the 

cooling capacity yields a MRE of 4.48%, an r value of 

0.970 and an R
2 

value of 0.9975, which are considerably 

poorer than the previous predictions. The evaluation of 

the cooling capacity requires the air mass flow rate, 
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specific enthalpies of the moist air at the inlet and outlet 

of the evaporator, and enthalpy of the condensate 

leaving the evaporator, thus having several sources of 

uncertainty. Consequently, the resulting high uncertainty 

influences the training process, and causes a poorer 

performance for the evapQ predictions.  
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Figure 2. The ANFIS predictions for the air dry bulb 

temperature at the evaporator outlet vs. experimental values. 
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Figure 3. The ANFIS predictions for the cooling capacity vs. 

experimental values. 
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Figure 4. The ANFIS predictions for the compressor power 

vs. experimental values. 

 

Because the evaluation of the compressor power 

requires the refrigerant mass flow rate and enthalpies of 

the refrigerant at the evaporator inlet and outlet, the 

accuracy of the ANFIS predictions for the compressor 

power is also not as good as those for Tevap,ao . In fact, the 

ANFIS yields even slightly poorer performance for 

compW  predictions compared with that for evapQ ones, as 

reported in Figure 4.  

 

As shown in Figure 5, the ANFIS predictions for the 

coefficient of performance result in a MRE of 3.86%, an r 

value of 0.966 and an R
2 

value of 0.9981. Because COP 

depends on two parameters, namely the cooling capacity 

load and compressor power, it has several uncertainty 

sources involved in the evaluation of these parameters. 

This leads to training of the proposed ANFIS using data 

with high uncertainty, which in turn causes a relatively 

poor statistical performance for the COP predictions. 

 

Figure 6 shows that the ANFIS predictions for the total 

rate of exergy destruction in the refrigeration circuit of the 

system have a comparable accuracy with evapQ , compW  

and COP predictions. However, as seen Figure 7, the 

ANFIS outstandingly predicts the compressor discharge 

temperature with a MRE of 0.28%, an r value of 0.988 

and an R
2 

value of 0.9999. The excellent ANFIS 

predictions for Tdis are due to the high accuracy of the 

temperature measurements performed in the experiments. 

The discharge temperature is an indicator of the 

compressor durability. The possibility of the thermal 

destruction of the compressor oil increases with rising 

discharge temperature.  
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Figure 5. The ANFIS predictions for the coefficient of 

performance vs. experimental values. 
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Figure 6. The ANFIS predictions for the total rate of exergy 

destruction in the refrigeration circuit of the refrigeration 

system vs. experimental values. 
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Figure 7. The ANFIS predictions for the compressor 

discharge temperature vs. experimental values. 

 

The comparisons of the ANFIS predictions for the six 

output parameters with the experimental results are 

alternatively presented in Table 4. It is seen that the 

ANFIS remarkably predicts all of the output parameters.  

 

Considering the prediction performances reported in 

Figures 2–7 and Table 4, one can conclude that ANFIS 

has a great ability to learn from input-output patterns 

and predict the output variables of the system. The 

results demonstrate that the ANFIS can be successfully 

applied to predict the performance of an AAC system 

using R134a.  

 

The developed ANFIS model can also be used for 

investigating the effects of the input parameters on the 

performance parameters of the system. For this aim, the 

ANFIS predictions for the cooling capacity and 

coefficient of performance as a function of the several 

input parameters are presented in Figures. 8–10 as 

sample results. Note that these figures report the 

predictions not only in the range of the inputs of the 

experimental study but also those beyond the range. 

  

Figure 8 shows the changes in the predicted values of 

evapQ  and COP with respect to the compressor speed 

when other five input parameters are kept constant at the 

values shown in the figure. As expectedly, evapQ  gets 

higher with increasing compressor speed due to mainly 

the fact that the refrigerant mass flow rate gets higher on 

increasing the speed. However, the COP gets lower with 

increasing compressor speed. Although the cooling 

capacity increases on rising the speed, the compressor 

power increases faster than the cooling capacity does, 

thereby causing a drop in COP. Note that the accuracies 

of the predictions in Figure 4 can not be measured 

because the points in this graph were not obtained 

experimentally. However, the statistical prediction 

performance of the developed ANFIS model has already 

been presented in Figures 2–7.  

 

500 1000 1500 2000
5

6

7

8

Q
e

v
a

p
 (

k
W

)

n
comp

 (rpm)
500 1000 1500 2000

1

2

3

4

C
O

P

T
evap,ai

 = 35

C


evap,ai

 = 16%

T
cond,ai

 = 35

C

V
m,evap

 = 3 m s
-1

V
m,cond

 = 2.8 m s
-1

COP
Q

evap

 
Figure 8.  The ANFIS predictions for the cooling capacity and 

coefficient of performance as a function of compressor speed. 

 

Figure 9 indicates the changes in the predicted values of 

evapQ and COP with respect to the mean air velocity at 

the evaporator outlet when other five input parameters 

are kept constant at the values shown in the figure. It is 

observed that evapQ rises moderately while COP drops 

slightly with increasing Vm,evap. As the evaporator air 

flow rate is increased, the convection heat transfer 

coefficient between the air and evaporator external 

surface gets higher. Then, in response to the increasing 

tendency of the superheat at the evaporator outlet, the 

TXV opens up and tries to maintain the superheat at a 

constant value by increasing the refrigerant mass flow 

rate, thus causing an increase in evapQ . However, the 

compressor power rises faster than cooling capacity 

does on increasing Vm,evap due to the increased 

refrigerant mass flow rate and elevated compression 

ratio. Consequently, COP gets slightly lower with 

increasing Vm,evap.  

 

Figure 10 reports the changes in the predicted values of 

evapQ and COP with respect to the mean air velocity at 

the condenser outlet when other five input parameters 

are kept constant at the values shown in the figure. It is 

observed that evapQ  and COP increases moderately with 

increasing Vm,cond. As the condenser air flow rate is 

increased, the condensing pressure drops, which 

eventually causes a decrease in the evaporating pressure. 

Because the evaporating temperature also drops with 

decreasing evaporating pressure, a higher rate of heat 

can be absorbed from the air across a higher temperature 

difference between the air and refrigerant streams, thus 

yielding a greater evapQ . On the other hand, an increase 

in the condenser air flow rate causes a decrease in the 

condensing pressure, thus yielding a lower compressor 

power and a higher COP.  

 

The prediction results presented in Figures. 8–10 are in 

a good agreement with the results presented in Alkan 

and Hosoz (2010a), which reports the experimental 

results obtained from the same AAC system.  
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Table 4. Comparison of the ANFIS predictions with experimental results. 

 

Test 

vector 

no. 

 

Experimental Results 

 

ANFIS Predictions 

aoevapT ,

    (K) 

evapQ
 

(kW) 

compW

(kW) 

 

COP  
totdE ,


 

(kW) 

disT
 

(K) 

aoevapT ,

   (K) 

evapQ

(kW) 

compW

(kW) 

 

COP  
totdE ,


 

(kW) 

disT
 

(K) 

1 278.2 6.11 1.94 3.15 1.91 343.5 278.5 6.07 1.96 2.95 1.94 343.7 

2 278.2 5.95 2.43 2.45 2.26 352.5 278.5 5.94 2.43 2.53 2.26 352.9 

3 280.7 6.47 2.18 2.97 2.10 347.6 280.8 6.39 2.22 2.86 2.13 346.3 

4 277.0 6.23 3.31 1.88 3.26 365.7 276.0 6.47 3.29 1.84 3.23 364.3 

5 277.3 6.32 2.35 2.69 2.31 348.2 277.5 6.28 2.39 2.65 2.35 349.1 

6 271.4 3.89 1.55 2.52 1.52 348.9 271.7 3.65 1.33 2.58 1.31 348.2 

7 273.2 4.80 1.92 2.49 1.92 350.0 273.0 4.98 2.05 2.47 2.05 351.2 

8 273.2 4.38 2.66 1.65 2.70 366.8 272.8 4.84 2.85 1.55 2.83 367.4 

9 281.1 6.71 2.78 2.41 2.77 356.0 281.4 6.86 2.78 2.51 2.78 355.0 

10 271.7 3.43 1.74 1.98 1.73 360.3 271.5 3.30 1.63 2.10 1.62 358.5 

11 276.2 5.40 1.66 3.26 1.65 343.8 277.1 5.20 1.59 3.05 1.61 343.6 

12 274.7 5.83 2.10 2.78 2.10 347.9 276.0 5.48 1.87 2.87 1.89 346.4 

13 280.2 7.11 2.44 2.91 2.44 348.6 282.3 6.72 2.43 2.82 2.43 349.6 

14 278.2 5.27 1.89 2.79 1.88 349.4 278.2 4.82 1.74 2.69 1.75 350.0 

15 273.2 3.17 1.24 2.55 1.24 351.2 271.8 3.35 1.21 2.60 1.21 349.9 

16 276.2 5.73 2.29 2.50 2.28 352.8 276.9 5.17 1.99 2.59 2.00 351.5 

17 277.2 5.46 2.97 1.84 2.97 365.7 275.9 5.26 2.74 1.80 2.73 365.2 

18 274.2 6.16 2.50 2.47 2.49 352.5 275.0 5.70 2.18 2.64 2.19 350.3 

19 274.2 6.05 2.67 2.27 2.66 356.0 274.0 5.92 2.49 2.41 2.50 354.2 

20 280.2 7.08 3.04 2.33 3.03 356.7 279.6 7.31 3.07 2.41 3.06 356.5 
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Figure 9.  The ANFIS predictions for the cooling capacity and 

coefficient of performance as a function of the mean air 

velocity at the evaporator outlet. 
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Figure 10.  The ANFIS predictions for the cooling capacity 

and coefficient of performance as a function of the mean air 

velocity at the condenser outlet. 

 

 

CONCLUSIONS 

 

An ANFIS model for predicting the performance of an 

automotive air conditioning system with a variable 

capacity compressor has been developed. In order to 

gather experimental data and obtain input-output pairs 

required by the model, an experimental AAC system 

was set up and tested under varying operating 

conditions. The ANFIS model was trained using some of 

the experimental data, and used for predicting the output 

parameters in response to the input parameters not 

introduced to the model in the training process. The 

performance of the ANFIS predictions was measured 

using the correlation coefficient, mean relative error, 

root mean square error and absolute fraction of variance. 

The ANFIS model usually yielded a good statistical 

performance with the correlation coefficients in the 

range of 0.966–0.988, MREs in the range of 0.23–

5.28% and absolute fractions of variance in the range of 

0.9957–0.9999. Finally, using the developed model, the 

effects of the compressor speed and mean air velocities 

at the evaporator and condenser outlets on the cooling 

load and coefficient of performance were investigated.   

 

The results reveal that AAC systems can be modelled 

accurately using the ANFIS approach, which is a 

powerful fuzzy logic neural network performing fuzzy 

modelling by learning information about the data set. 

Requiring only a limited number of tests instead of a 

comprehensive experimental study or dealing with a 
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complex mathematical model, engineers can rely on the 

ANFIS technique for determining the performance of 

AAC systems.  
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