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 ÖZ 

Prizmatik ve prizmatik olmayan ankastre kirişlerin genel yükleme koşullarındaki büyük sehim problemi için tam anlamıyla analitik 
çözüm bulunmamaktadır. Prizmatik olmayan bir ankastre kirişin ele alındığı durumlarda ise büyük sehim probleminin zorluğu daha 

da artmaktadır. Bu çalışmada, İteratif Diferansiyel Quadrature Metodunun (I-DQM) ve Birleşim Metodunun (BM) karşılaştırılması 
yapılmıştır. İki yöntemle ayrı ayrı prizmatik ankastre kirişlerde büyük sehim probleminin sayısal çözümü gerçekleştirilmiştir. Dado 
ve Sadder (2005) tarafından geşitirlen yarı-analitik yöntem ile karşılaştırıldığında elde edilen sonuçlar her iki yöntemin de ele 
alınan problemin çözümünde oldukça etkili olduğunu göstermiştir. Bununla birlikte I-DQM’in BM’ye daha hassas ve geniş aralıklı 
bir çözüm sağladığı ortaya koyulmuştur.  

Anahtar Kelimeler: Büyük sehim, iterarif diferansiyel quadrature metodu, birleşim metodu, nonlineer simülasyon, 
prizmatik ankastre kiriş. 

Large Deflection Analysis of Prismatic Cantilever 

Beam Comparatively by Using Combing Method and 

Iterative DQM 

ABSTRACT 

There is no exactly analytical solution for the large deflection problem of prismatic cantilever beams under general loading 
conditions. In the case of considering a non-prismatic cantilever beam, the difficulty of the larger deflection problem is increased. 
In this study, the comparison of the Iterative Differential Quadrature Method (I-DQM) and the Combining Method (CM) was 
performed. Numerical solution of the large deflection problem was separately performed with both the I-DQM and the CM for 
prismatic cantilever beams. The obtaining results show that both of these methods gave more accurate solutions compared with a 
reliable semi-analytic method which was introduced by Dado and Sadder (2005). Besides, it was demonstrated that the I-DQM 
provided a more wide-range solution than the CM. 

Keywords: Large deflection, iterative differential quadrature method, combining method, nonlinear simulation, cantilever 

prismatic beam. 

1. INTRODUCTION 

In recent years, the determination of large deflection 

behaviour of prismatic and non-prismatic cantilever 

beams has become a very important issue especially for 

civil, mechanical, aero plane and biomedical 

engineering. Beams and columns with varying strength 

values were used uniformly for distributing the strength 

and mass of complex structures. Besides, tiny cantilever 

beams were used for providing some functional 
properties to system in many special fields [1].  

There is no exactly analytical solution for the large 

deflection problem of prismatic and non-prismatic 

cantilever beams under general loading conditions. Thus, 

numerical methods ensured proper approximations for 

the solution of large deflection problems [2]. According 

to literature review, researchers performed numerical, 

approximately analytical, and semi-analytical solutions 
for the large deflection problem of many kinds of 

cantilever beams. However, some of these studies 

weren’t provide proper accuracy for the solution of 

problem. Also, some of them ensured very high accuracy 

but algorithms of these studies caused very high 

calculation time or difficulty for using a daily solution of 

the large deflection problem [3-22]. 

Navaee and Elling investigated equilibrium 

configuration of a prismatic cantilever beam for different 

loading conditions using the Elliptic Integral Method. 

Results of the investigation showed that there was more 

than one equilibrium configuration for flexible beams 

[23]. Faulkner et al., developed a New Segmental 

Shooting Technique for the solution of large deflection 
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problem. The procedure used to solve the problem 

provided a solution for different boundary conditions. 

The proposed method was considered the large deflection 

problem as small deflection by dividing the beam into 
small pieces. The problem that was converted to the 

initial value problem was solved by the Shooting 

Technique [24]. Dado and Al-Sadder solved the large 

deflection problem of cantilever beams using a 

polynomial formulating the rotating angle of beam. 

Sadder et al. developed an algorithm for the solution of 

non-prismatic beams large deflection problem using 

Finite Difference Method [1]. Tolou and Herder carried 

out a semi-analytical solution procedure using the 

Adomian Decomposition Method for the large deflection 

problem of cantilever under point load. Results of the 

solutions proved that the solution procedure suitable for 
obtaining problem [17]. Batista obtained an analytical 

solution of equilibrium configuration of the large 

deflection problem of cantilever beams using Jacobi 

Elliptic Function [19]. 

In this study, comparison of the I-DQM and the CM is 
performed. With the intent to compare of the I-DQM and 

the CM, the large deflection analysis of prismatic 

cantilever beam was derived. The obtaining results 

proved that both methods were suitable for the nonlinear 

numerical solution. Besides, the I-DQM was ensured 

more accurate results than the CM. 

 

2. WEIGHTING COEFFICIENT AND 

ITERATIVE DQM  

 Bellman et al. introduced the DQM for the numerical 

solution of differential equation in 1971. Most important 

parameter of this method is the calculation of weighting 

coefficients. Quan and Chan used Lagrange Polynomial 

as a test function for the calculation of weighting 

coefficients. Shu and Richards developed an algebraic 

formula for calculation of weighting coefficients using 

both approximations of Bellman et al. and Quan and 
Chan. This new method was called as Generalized DQM 

(GDQM) [25-29]. 

 

According to GDQM rth order derivative of f(x) is given 

in Equation 1. 

drf(xi)

dxr
= ∑aij

(r)f(xj) →

N

j=1

 i = 1,2,… ,N                        (1) 

Here f(x) is a function of x which is described in x∈[a,b]. 

Besides, f(xi) shows the numerical values of f(x) for a 

certain value of xi ((i = 1,2, ... N). In the Eq. 1 a_ij^((r) ) 

shows the weighting coefficient of DQM for rth order 
derivative. Calculation of weighting coefficient is 

presented in Eq. 1 and 2 by using Lagrange Interpolation 

Function in the following terms. 

lj(x) =
ϕ(x)

(x − xj)ϕ
(1)(xj)

 → j = 1,2, … ,N                     (2) 

 

ϕ(x) = ∏(x − xm) ;  

N

m=1

 ϕ(1)(xj) =
dϕ(xj)

dx
= ∏ (xj − xm)                                                                                       (3)

N

m=1,m≠1

 

aij
(1)

=
𝑑lj(x𝑖)

𝑑𝑥
=

ϕ(1)(xi)

(x𝑖 − xj)ϕ
(1)(xj)

, 𝑖, 𝑗 = 1,2,… , 𝑁, 𝑖 ≠ 𝑗                                                                                                     (4) 

aii
(1)

= − ∑ aij
(1)

 , i = 1,2,… ,N                                                                                                                                       (5)

N

j=1,i≠j

 

Similarly, 

aij
(r) =

𝑑𝑟 lj(x𝑖)

𝑑𝑥𝑟
= 𝑟(aii

(r−1)
aij
(1)

−
aij

(r−1)

(x𝑖 − xj)
) , 𝑖, 𝑗 = 1,2,… ,𝑁, 𝑖 ≠ 𝑗 , 𝑟 ≥ 2                                                                     (6) 

 

aii
(r) =

𝑑𝑟 lj(x𝑖)

𝑑𝑥𝑟
= − ∑ aij

(r) , i = 1,2,… , N

N

j=1,i≠j

                                                                                                                   (7) 

aii
(r)

= ∑aik
(r−1)

aik
(1)

 , i, j = 1,2,… ,N

N

k=1

 , , 𝑟 ≥ 2                                                                                                                  (8) 

The weighting coefficients computed using Equations from 2 to 8 described the matrix of [A(r)] given in Equation 9. 

 

[A(r)] = (
d

dx
)

r

=
dr

dxr
=

dr−1

dxr−1

d

dx
=

d

dx

dr−1

dxr−1
=

[
 
 
 
 a11

(r)

a21
(r)

a12
(r)

a22
(r)

… a1N
(r)

… a2N
(r)

⋮ ⋮ ⋮ ⋮

aN1
(r) aN2

(r)
… aNN

(r)
]
 
 
 
 

                                                                     (9) 
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Currently, many of researchers used the GDQM with 

intent to solve nonlinear engineering problems [30-34]. 

When the problem has multiple boundary conditions at 

the same point, the DQM could not provide a numerical 
solution. With the intent to avoid this situation, 

researchers developed a lot of methods such as δ 

approximation. [35-39]. One of the most effective usages 

of the DQM is considered the method as an iterative 

scheme. Thus, iteration procedure provides the multiple 

boundary conditions at the same point. In this study, the 

Newton-Raphson Iteration Method was used as the 

iteration procedure, given simply in Eq. 10.  

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
                                                          (10) 

 

3.  COMBINING METHOD  

One of the approaches used to overcome the difficulties 

encountered when using the DQM combined the DQM 

with another method [40-42]. 

 

 
Figure 1. . Derivative of ex by using CM 

 

Girgin et al. developed the Combining Method (CM) 

which combined the DQM and Simulation Technique 
(ST) for providing applying multiple boundary 

conditions at the same point. ST was used for the solution 

of Ordinary Differential Equations (ODE) and automatic 

control problems. With this purpose, a lot of software 

was used such as Matlab/Simulink, Dymola, AMESim, 

and so on. Although the ST is a good method for the 

solution of ODE, the boundary conditions cannot be 

entered into the system. So, the CM was ensured as a new 

approach for the solution of boundary conditions 
problem and resolved the weakness of both DQM and ST 

[43-45]. Simplest form of the CM with n=6 grids is 

shown in Figure 1 for the derivative of ex. Also, Figure 2 

shows that how to solve the given ODE in Equation 11 

using the CM with n=6 grids. 

𝑑𝑦

𝑑𝑥
− 𝑦 = 0 , 𝑦(1) = 𝑒                                                           (11)

 
Figure 2. . Simple ODE solution using CM for Equation 11 
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4. COMPARISON OF I-DQM AND CM 

The large deflection problem of prismatic cantilever 

beam considered for the purpose of comparison of I-

DQM and CM. Equation 12 is determined large 

deflection behaviour of prismatic cantilever beam [2].  

𝐸𝐼(𝑠)
𝑑2𝜃

𝑑𝑠2
+ 𝐸

𝑑𝐼(𝑠)

𝑑𝑠

𝑑𝜃

𝑑𝑠
+ [ ∫ 𝑞𝑦(𝑠)𝑑𝑠 + 𝐹𝑦

𝑠=𝐿

𝑠=𝑠

] 𝑐𝑜𝑠𝜃 − [ ∫ 𝑞𝑥(𝑠)𝑑𝑠 + 𝐹𝑥

𝑠=𝐿

𝑠=𝑠

] 𝑠𝑖𝑛𝜃 = 0                                            (12) 

 

The large deflection problem of prismatic cantilever 

beam investigated for two different loading conditions. 

Here, the elasticity modulus of the beam material and 

inertia of the beam are expressed as E and I(s), 

respectively. The distributed loads in the x and y 
directions and point loads from the free end are expressed 

by qy, qx, Fx and Fy, in Equation 11. The moment applied 

from the free end of the built beam obtained from the 

differential terms of Equation 11 as known from the 

theory of elasticity. In this study, EI(s) expression 

considered to be equal to one cause of the obtaining the 

large deflection problem discussed for a prismatic 

cantilever beam. The slope and deflection values are zero 

at the point of the cantilever support based on the theory 

of elasticity. These values are considered as basic 
boundary conditions of the large deflection problem. The 

I-DQM algorithms which are given in Eq. 13, 14 and 15 

provide the solution of the large deflection problem. 

 

 

𝑓 = 𝐸𝐼(𝑠) ∙ 𝐴(2) ∙ 𝜃 + 𝐸
𝑑𝐼(𝑠)

𝑑𝑠
𝐴(1) ∙ 𝜃 + [ ∫ 𝑞𝑦(𝑠)𝑑𝑠 + 𝐹𝑦

𝑠=𝐿

𝑠=𝑠

] 𝑐𝑜𝑠𝜃 − [ ∫ 𝑞𝑥(𝑠)𝑑𝑠 + 𝐹𝑥

𝑠=𝐿

𝑠=𝑠

] 𝑠𝑖𝑛𝜃                           (13) 

𝑓 = 𝑬𝑰(𝒔) ∙ 𝐴(2) ∙ 𝜃 + 𝑬
𝒅𝑰(𝒔)

𝒅𝒔
𝐴(1) ∙ 𝜃 + [ ∫ 𝒒𝒚(𝒔)𝒅𝒔 + 𝑭𝒚

𝒔=𝑳

𝒔=𝒔

] 𝒄𝒐𝒔𝜽 − [ ∫ 𝒒𝒙(𝒔)𝒅𝒔 + 𝑭𝒙

𝒔=𝑳

𝒔=𝒔

] 𝒔𝒊𝒏𝜽                     (14) 

 

𝜃(𝑠) = 𝜃(𝑠) −
𝑓

𝑓′
                                                            (15) 

Here, “A” shows matrix of the weighting coefficients and 

bold terms shows Jacobians in the Newton Raphson 

Method. 

The CM block diagram which gives the solution of the 

large deflection problem is given in Figure 3. 

 

 
Figure 3. . Block Diagram of Solving the Large Deflection Problem by the CM 

 

Problem 1: 

Firstly, considered large deflection problem is shown in 

Figure 4. In this situation cantilever beam is discussed 
only under uniformly distributed load. 

The solution obtained using I-DQM was considered for 

different values of the uniformly distributed load such as 

qy(s)= -4, -10, -20, -40, -100, -150, -200, and -1000. 
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Figure 4. Cantilever Prismatic Beam under Uniformly 
Distributed Load. 

The weighting coefficients matrix used while performing 
the solution was calculated by using 6 uniformly 

distributed grid points. Iteration number of the I-DQM 

was determined as 5. Results of numerical study provided 

reliable solution for large deflection problem even with 

very small CPU times (Figure 5). Compared to the other 

results in the literature, the I-DQM was ensured to be 

very successful in numerical results for the large 
deflection problem. Similarly, numerical simulation of 

the large deflection problem was performed by using CM 

for the Problem 1 with different distributed loads such as 

qy(s)= -4, -10, -20, -40, -100,-150 and -200 (Figure 6). 

21 uniformly distributed grid points were used for 

computing the weighting coefficients of the CM. The 

obtaining results was shown that CM was reliable for 

solution of the large deflection problem. 

 

 

 
Figure 5. Large Deflection Diagram of Cantilever Beam under Distributed Load with I-DQM. 

 

 
Figure 6. Large Deflection Diagram of Cantilever Beam under Distributed Load with CM 
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Dado and Al-Sadder developed a new semi-analytical 

method for solution of large deflection problem. This 

study is one of the most accurate solution procedures for 

the large deflection problem. Thus, this study was used 
as a reference to measure the reliability of the solutions 

provided by the I-DQM and the CM. Figure 7 shows that 

the solution of the problem could be performed up to 

maximum distributed load value of qy = -100 [2]. The 

results obtained using I-DQM provided a reliable 

solution up to the maximum distributed load qy = -1000. 

Also, the CM is ensured that a proper solution up to the 

maximum distributed load qy = -200. Hence, it was seen 
that both methods were effective for solving the large 

deflection problem of cantilever prismatic beams. 

Besides, the I-DQM was provide more accuracy than 

other studies.

 

 
Figure 7. Results of the Problem 1 in the Study by Dado and Al-Sadder (2005). 

 

Problem 2: 

The second problem, solved by using I-DQM and CM, is 

shown in Figure 8. In this situation, the large deflection 

problem is considered under free end forces and moment.  

When the solutions using the I-DQM were compared 
with other results in the literature, it is clearly seen that 

the method is more successful than other studies 

according to the deflection diagrams shown in Figure 9. 

The results show that the large deflection problem can be 

solved using the I-DQM until to Fx = -18, Fy = 104, Mz 

= -18. As in the first problem discussed, it was observed 

that the problem of large deflection was solved in very 

short CPU times which can be measured in milliseconds 

using 5 iterations and number of girds n =6. 

 

Figure 8. Cantilever Prismatic Beam under the Effect of Fx 
Fy and Me 
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Figure 9. Large Deflection Diagram of Cantilever Beam for the Problem 2 with I-DQM 

 
Figure 10. Large Deflection Diagram of Cantilever Beam for the Problem 2 with the CM 
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The deflection diagrams of the solutions for the problem 

2 performed using the CM are given in Figure 10. 

According to this, reliable results can be obtained up to 

Fx = -7, Fy = 14, and Mz = -7 using 21 grids. It was found 
that the method did not achieve sufficient accuracy at 

higher load values. 

It is clear that both methods are significantly successful 

(Figure 11) compared to other results in the literature. 

Reliable results can be obtained up to Fx = -7, Fy = 14, 

and Mz = -7 in the literature for solution of the Problem 
2 [2]. Present study ensured wide range results using the 

I-DQM for the Problem 2. Also, the CM provided same 

accuracy with literature for the solution of the Problem 2. 

 

 
Figure 11. Results of the Problem 2 in the Study by Dado and Al-Sadder (2005) 

 

6. CONCLUSIONS 

In this study, the I-DQM and the CM were compared. 

Numerical solution of the large deflection problem was 

performed for prismatic cantilever beams with the I-

DQM and the CM. The solutions performed using the 
CM ensured similar results with other studies in the 

literature. However, the solutions obtained using the I-

DQM provided very high accuracy and a wide range of 

results at very low CPU times. Consequently, both of the 

methods seem to give reliable results for the structural 

large deflection problem.  
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