Araştırma Makalesi
BibTex RIS Kaynak Göster

Memristör taklit devresi kullanılarak yeni bir işlemsel yükselteç modeli ve faz kaydırmalı osilatör devresine uygulanması

Yıl 2024, Cilt: 39 Sayı: 3, 1963 - 1972, 20.05.2024
https://doi.org/10.17341/gazimmfd.1199645

Öz

Bu çalışmada, geleneksel işlemsel yükselteç (741 ailesi) devre elemanının iç yapısı doğrusal TiO2 sürüklenme hızlı memristör (DTSHM) emulatör modeli ile yeniden tasarlanarak yeni bir op-amp modeli oluşturulmuştur. Önerilen bu op-amp modelinin optimize edilmiş çalışma koşulları ve durumları yeniden belirlendi. RC osilatörlerinden biri olan faz kaydırmalı osilatör (FKO) devresinde yükseltici eleman olarak memristor tabanlı op-amp modeli kullanılmıştır. Önerilen yeni FKO ile salınım başlama zamanı, yerleşme zamanı, hızlı fourier dönüşümü (FFT) analizi ve bunların çıkış parametreleri üzerindeki etkileri hem deneysel hem de simüle edilmiştir. Bu çalışmada önerilen yeni osilatör modeli, sadece orta frekans bölgesinde değil, aynı zamanda düşük ve yüksek frekans bölgelerinde de detaylı olarak değerlendirilmektedir. Ayrıca bu devrelerin verimliliği uygulama devreleri ile entegre edilmiş ve önerilen op-amp modelinin doğruluğu ve uygulanabilirliği teorik olarak kapsamlı bir şekilde çalışılmış ve deneysel ve simülasyon sonuçları ile desteklenmiştir. Son olarak önerilen op-amp modeli ile gerçekleştirilen osilatör devrelerinin hem simülasyonu hem de deneysel sonuçları tablolar halinde detaylı olarak sunulmuştur.

Kaynakça

  • Mutlu R., & Karakulak E., Memristor-Based Phase Shifter. In 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1-5, 2018. IEEE.
  • Muthuswamy B., Implementing memristor based chaotic circuits. International Journal of Bifurcation and Chaos, 20 (05), 1335-1350, 2010.
  • Ranjan R. K., Sagar S., Roushan S., Kumari B., Rani N., & Khateb F., High‐frequency floating memristor emulator and its experimental results. IET Circuits, Devices & Systems, 13 (3), 292-302, 2019.
  • Westra J. R., Verhoeven C. J., & Van Roermund A. H., Oscillators and Oscillator Systems, 2000, Kluwer.
  • Ostrovskii, V., Fedoseev, P., Bobrova, Y., & Butusov, D., Structural and Parametric Identification of Knowm Memristors. Nanomaterials, 12 (1), 63, 2021.
  • Soni K., & Sahoo S., A Review On Different Memristor Modeling And Applications. In 2022 International Mobile and Embedded Technology Conference (MECON), 688-695, 2022, IEEE.
  • Marani R., Gelao G., & Perri A. G., A review on memristor applications. arXiv preprint arXiv:1506.06899, 2015.
  • Li Z., Yu D., Ye Z., Iu H. H., & Fernando T., Memristor‐based logic gate and its application in pulse train controlled Buck converter. International Journal of Circuit Theory and Applications, 2022.
  • Chua L., Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18 (5), 507-519, 1971.
  • Elsamman A. H., Radwan A. G., & Madian A. H., Resistorless memristor based oscillator. In 2014 26th International Conference on Microelectronics (ICM), 168-171, 2014, IEEE.
  • Tsuzuki Y., Adachi T., & Zhang J. W., Fast start-up crystal oscillator circuits. In Proceedings of the 1995 IEEE International Frequency Control Symposium (49th Annual Symposium), 565-568, 1995, IEEE.
  • Ghosh M., Singh A., Borah S. S., Vista J., Ranjan A., & Kumar A., 2022, MOSFET-Based Memristor for High-Frequency Signal Processing. IEEE Transactions on Electron Devices, 69 (5), 2248-2255, 2022.
  • Robinson F. N. H. & Ockendon H., A pure sine-wave oscillator with a fast settling time. European Journal of Applied Mathematics, 9 (2), 95-104, 1998.
  • Toker A., Çiçekoğlu O., & Kuntman H., On the oscillator implementations using a single current feedback op-amp. Computers & Electrical Engineering, 28 (5), 375-389, 2002.
  • Parlar I., Almali M. N., Comparison of the output parameters of the memristor-based op-amp model and traditional op-amp model. Journal of Electronic Testing, 28 (2), 131-143, 2022.
  • Mutlu R., Karakulak E., A Memristor (Memory Resistor) Emulator Circuit that can Be used in Engineering Education. Electrical Electronics Computer Engineering Education Symposium, 2009.
  • Sözen H., & Çam U., New memristor emulator circuit using OTAs and CCIIs. In 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), 10-14, 2015, IEEE.
  • López-Sánchez C., Carrasco-Aguilar M. A., Muñiz-Montero C., A 16Hz–160kHz memristor emulator circuit. AEU-International Journal of Electronics and Communications, 69 (9), 1208-1219, 2015.
  • Vista J., & Ranjan A., A simple floating MOS-memristor for high-frequency applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27 (5), 1186-1195, 2019.
  • Kim H., Sah M. P., Yang C., Cho S., & Chua L. O., Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 59 (10), 2422-2431, 2012.
  • Jung W., Op-Amp applications handbook, 2015, Newnes.
  • Mancini R., Op amps for everyone: design reference, 2003, Newnes.
  • Boylestad R. L., Louis N., Electronic Devices and Circuit Theory, Palme Publishing, 10th Edition, 2015, Ankara.
  • Information D., & Schematic S., µA741 general-purpose operational amplifiers, 2018, Texas Instruments.
  • Huijsing J. H., Design and applications of the operational floating amplifier (OFA): The most universal operational amplifier. Analog Integrated Circuits and Signal Processing, 4 (2), 115-129, 1993.
  • Kapil A., Shah A., Agarwal R., Sharma S., Analysis and Comparative Study of Different Parameters of Operational Amplifier Using Bipolar Junction Transistor and Complementary Metal Oxide Semiconductor Using Tanner Tools. International Journal of Soft Computing and Engineering, 2 (5), 19- 23, 2012.
  • Mehta H, Agarwal N, Dutt K, Jain S., Effect of Current Feedback Operational Amplifiers using BJT and CMOS. International Journal of Advanced Research in Computer Science and Software Engineering, 3 (4), 1081-1087, 2013.
  • Itoh M., & Chua L. O., Memristor oscillators. International journal of bifurcation and chaos, 18 (11), 3183-3206, 2008.
  • Yumrukaya E., Memristörler Kullanan Osilatör Devrelerinin Analizi ve Tasarımı (Master). Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, 2017, İzmir, Türkiye.
  • Anand A., Aggarwal B., & Singh K., Memristor Based Oscillator. In 2019 International Conference on Computing, Power and Communication Technologies (GUCON), 89-92, 2019, IEEE.

Simulation and experimental investigation of low, middle and high frequency regions of a phase shift oscillator with op-amp redesigned using a memristor

Yıl 2024, Cilt: 39 Sayı: 3, 1963 - 1972, 20.05.2024
https://doi.org/10.17341/gazimmfd.1199645

Öz

In this paper, a novel operational amplifier (op-amp) model was created by redesigning the internal structure of traditional op-amp (ua741 family) circuit element with the linear dopant drift TiO2 memristor (LDDTM) emulator model. The optimized operating conditions and states of this novel op-amp model were determined. The memristor based op-amp model was used as an amplifier element in the phase shift oscillator (PSO) circuit which is one of the RC oscillators. With the novel new phase shift oscillator, the oscillation settling time, start time, fast fourier transform (FFT) analysis and their effects on the output parameters are investigated both experimentally and simulated. The new oscillator model novel in this study is evaluated in detail not only in the middle frequency region, but also in the high and low frequency regions. In addition, the efficiency of these circuits has been merged with the experimental circuits, and the accuracy and practicality of the novel op-amp model has been comprehensively studied theoretically and supported by simulation and experimental results. Finally, both experimental and simulation results of the oscillator circuits realized with the novel op-amp model are shown in detail in tables.

Kaynakça

  • Mutlu R., & Karakulak E., Memristor-Based Phase Shifter. In 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1-5, 2018. IEEE.
  • Muthuswamy B., Implementing memristor based chaotic circuits. International Journal of Bifurcation and Chaos, 20 (05), 1335-1350, 2010.
  • Ranjan R. K., Sagar S., Roushan S., Kumari B., Rani N., & Khateb F., High‐frequency floating memristor emulator and its experimental results. IET Circuits, Devices & Systems, 13 (3), 292-302, 2019.
  • Westra J. R., Verhoeven C. J., & Van Roermund A. H., Oscillators and Oscillator Systems, 2000, Kluwer.
  • Ostrovskii, V., Fedoseev, P., Bobrova, Y., & Butusov, D., Structural and Parametric Identification of Knowm Memristors. Nanomaterials, 12 (1), 63, 2021.
  • Soni K., & Sahoo S., A Review On Different Memristor Modeling And Applications. In 2022 International Mobile and Embedded Technology Conference (MECON), 688-695, 2022, IEEE.
  • Marani R., Gelao G., & Perri A. G., A review on memristor applications. arXiv preprint arXiv:1506.06899, 2015.
  • Li Z., Yu D., Ye Z., Iu H. H., & Fernando T., Memristor‐based logic gate and its application in pulse train controlled Buck converter. International Journal of Circuit Theory and Applications, 2022.
  • Chua L., Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18 (5), 507-519, 1971.
  • Elsamman A. H., Radwan A. G., & Madian A. H., Resistorless memristor based oscillator. In 2014 26th International Conference on Microelectronics (ICM), 168-171, 2014, IEEE.
  • Tsuzuki Y., Adachi T., & Zhang J. W., Fast start-up crystal oscillator circuits. In Proceedings of the 1995 IEEE International Frequency Control Symposium (49th Annual Symposium), 565-568, 1995, IEEE.
  • Ghosh M., Singh A., Borah S. S., Vista J., Ranjan A., & Kumar A., 2022, MOSFET-Based Memristor for High-Frequency Signal Processing. IEEE Transactions on Electron Devices, 69 (5), 2248-2255, 2022.
  • Robinson F. N. H. & Ockendon H., A pure sine-wave oscillator with a fast settling time. European Journal of Applied Mathematics, 9 (2), 95-104, 1998.
  • Toker A., Çiçekoğlu O., & Kuntman H., On the oscillator implementations using a single current feedback op-amp. Computers & Electrical Engineering, 28 (5), 375-389, 2002.
  • Parlar I., Almali M. N., Comparison of the output parameters of the memristor-based op-amp model and traditional op-amp model. Journal of Electronic Testing, 28 (2), 131-143, 2022.
  • Mutlu R., Karakulak E., A Memristor (Memory Resistor) Emulator Circuit that can Be used in Engineering Education. Electrical Electronics Computer Engineering Education Symposium, 2009.
  • Sözen H., & Çam U., New memristor emulator circuit using OTAs and CCIIs. In 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), 10-14, 2015, IEEE.
  • López-Sánchez C., Carrasco-Aguilar M. A., Muñiz-Montero C., A 16Hz–160kHz memristor emulator circuit. AEU-International Journal of Electronics and Communications, 69 (9), 1208-1219, 2015.
  • Vista J., & Ranjan A., A simple floating MOS-memristor for high-frequency applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27 (5), 1186-1195, 2019.
  • Kim H., Sah M. P., Yang C., Cho S., & Chua L. O., Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 59 (10), 2422-2431, 2012.
  • Jung W., Op-Amp applications handbook, 2015, Newnes.
  • Mancini R., Op amps for everyone: design reference, 2003, Newnes.
  • Boylestad R. L., Louis N., Electronic Devices and Circuit Theory, Palme Publishing, 10th Edition, 2015, Ankara.
  • Information D., & Schematic S., µA741 general-purpose operational amplifiers, 2018, Texas Instruments.
  • Huijsing J. H., Design and applications of the operational floating amplifier (OFA): The most universal operational amplifier. Analog Integrated Circuits and Signal Processing, 4 (2), 115-129, 1993.
  • Kapil A., Shah A., Agarwal R., Sharma S., Analysis and Comparative Study of Different Parameters of Operational Amplifier Using Bipolar Junction Transistor and Complementary Metal Oxide Semiconductor Using Tanner Tools. International Journal of Soft Computing and Engineering, 2 (5), 19- 23, 2012.
  • Mehta H, Agarwal N, Dutt K, Jain S., Effect of Current Feedback Operational Amplifiers using BJT and CMOS. International Journal of Advanced Research in Computer Science and Software Engineering, 3 (4), 1081-1087, 2013.
  • Itoh M., & Chua L. O., Memristor oscillators. International journal of bifurcation and chaos, 18 (11), 3183-3206, 2008.
  • Yumrukaya E., Memristörler Kullanan Osilatör Devrelerinin Analizi ve Tasarımı (Master). Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, 2017, İzmir, Türkiye.
  • Anand A., Aggarwal B., & Singh K., Memristor Based Oscillator. In 2019 International Conference on Computing, Power and Communication Technologies (GUCON), 89-92, 2019, IEEE.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İshak Parlar 0000-0002-3383-8091

Mehmet Nuri Almalı 0000-0003-2763-4452

Erken Görünüm Tarihi 16 Mayıs 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 4 Kasım 2022
Kabul Tarihi 24 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 3

Kaynak Göster

APA Parlar, İ., & Almalı, M. N. (2024). Memristör taklit devresi kullanılarak yeni bir işlemsel yükselteç modeli ve faz kaydırmalı osilatör devresine uygulanması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1963-1972. https://doi.org/10.17341/gazimmfd.1199645
AMA Parlar İ, Almalı MN. Memristör taklit devresi kullanılarak yeni bir işlemsel yükselteç modeli ve faz kaydırmalı osilatör devresine uygulanması. GUMMFD. Mayıs 2024;39(3):1963-1972. doi:10.17341/gazimmfd.1199645
Chicago Parlar, İshak, ve Mehmet Nuri Almalı. “Memristör Taklit Devresi kullanılarak Yeni Bir işlemsel yükselteç Modeli Ve Faz kaydırmalı osilatör Devresine Uygulanması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 3 (Mayıs 2024): 1963-72. https://doi.org/10.17341/gazimmfd.1199645.
EndNote Parlar İ, Almalı MN (01 Mayıs 2024) Memristör taklit devresi kullanılarak yeni bir işlemsel yükselteç modeli ve faz kaydırmalı osilatör devresine uygulanması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1963–1972.
IEEE İ. Parlar ve M. N. Almalı, “Memristör taklit devresi kullanılarak yeni bir işlemsel yükselteç modeli ve faz kaydırmalı osilatör devresine uygulanması”, GUMMFD, c. 39, sy. 3, ss. 1963–1972, 2024, doi: 10.17341/gazimmfd.1199645.
ISNAD Parlar, İshak - Almalı, Mehmet Nuri. “Memristör Taklit Devresi kullanılarak Yeni Bir işlemsel yükselteç Modeli Ve Faz kaydırmalı osilatör Devresine Uygulanması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (Mayıs 2024), 1963-1972. https://doi.org/10.17341/gazimmfd.1199645.
JAMA Parlar İ, Almalı MN. Memristör taklit devresi kullanılarak yeni bir işlemsel yükselteç modeli ve faz kaydırmalı osilatör devresine uygulanması. GUMMFD. 2024;39:1963–1972.
MLA Parlar, İshak ve Mehmet Nuri Almalı. “Memristör Taklit Devresi kullanılarak Yeni Bir işlemsel yükselteç Modeli Ve Faz kaydırmalı osilatör Devresine Uygulanması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 3, 2024, ss. 1963-72, doi:10.17341/gazimmfd.1199645.
Vancouver Parlar İ, Almalı MN. Memristör taklit devresi kullanılarak yeni bir işlemsel yükselteç modeli ve faz kaydırmalı osilatör devresine uygulanması. GUMMFD. 2024;39(3):1963-72.