Araştırma Makalesi
BibTex RIS Kaynak Göster

Açık Deniz Yapıları Kova Temel Sistemi Davranışı Üzerinde Tekrarlı Yük Frekansının Etkisi

Yıl 2018, , 8411 - 8431, 01.05.2018
https://doi.org/10.18400/tekderg.337970

Öz



Açık deniz yapıları kova temel sistemi davranışının
tahmini ile ilgili henüz yeterli bilgi birikimine ulaşılmamıştır. Açık deniz
koşullarında temel sistemlerinin ağır tekrarlı yüklere maruz kalması nedeniyle
zeminde kalıcı deplasman ve aşırı boşluk suyu basıncı gelişimi meydana gelir. Çalışmada
çok ayaklı temel sitemi ile tasarlanmış açık deniz yapısının bir kova temelinin
eksenel tekrarlı yükler altındaki davranışı sayısal analiz yöntemi ile
incelenmiştir. Özellikle yük frekansının davranış üzerindeki etkisine
odaklanılmıştır. Suya doygun zemin hipoplastik malzeme modeli ve iki fazlı üç
boyutlu sonlu elemanlar ile modellenmiştir. Analiz sonuçları, tekrarlı yük
frekansının zeminde aşırı boşluk suyu basıncı gelişimi ve temelin deplasman
birikimi üzerinde oldukça önemli etkileri olduğunu göstermiştir.




Kaynakça

  • Byrne, B.W., Houlsby G.T., Foundation for offshore wind turbines, Phil. Trans. Roy. Soc. London. A 361, 2909-2930, 2003.
  • Zaaijer, M. B., Comparison of monopile, tripod, suction bucket and gravity base design for a 6 MW turbine, Offshore Wind energy in Mediterranean and Other European Seas (OWEMES conference), Naples, Italy, 2003.
  • Thieken, K., Achmus, M., Schröder, C., On the behavior of suction buckets in sand under tensile loads, Computers and Geotechnics, 60, 88-100, 2014.
  • Achmus, M., Schröder, C., Installation und Tragverhalten von Bucketgründungen für Offshorebauwerke, Bautechnik, 91 (9), 597-608, 2014.
  • Houlsby, G.T., Byrne, B.W., Design procedures for installation of suction caissons in sand. Proceedings of the ICE - Geotechnical Engineering, 158(3), 135 –144, 2005.
  • Senders, M., Suction caissons in sand as tripod foundations for offshore wind turbines, PhD Thesis, Univ. of Western Australia, Perth, Australian, 2008.
  • Ibsen, L.B., Thilsted, C.L., Numerical study of piping limits for installation of large diameter buckets in layered sand. In: T. Benz, S. Nordal (Eds.), Proceedings of the seventh European conference on numerical methods in geotechnical engineering, Trondheim, Norway. 921–926, 2010.
  • Zhang, J.H., Zhang, L.M., Lu, X.B., Centrifuge modelling of suction bucket foundations for platforms under ice-sheet-induced cyclic lateral loadings, Ocean Engineering, 34(8-9), 1069-1079, 2007.
  • LeBlanc, C., Design of offshore wind turbine support structures, PhD Thesis, Aalborg Univ., Aalborg, Denmark, 2009.
  • Kim, D.-J., Choo, Y.W., Kim, J.-H., Kim, S., Kim, D.-S., Investigation of monotonic and cyclic behavior of tripod suction bucket foundations for offshore wind towers using centrifuge modeling, J. Geotech. Geoenviron. Eng., 140(5), 1–10, 2014.
  • Achmus, M., Thieken, K., Numerical Simulation of the Tensile Resistance of Suction Buckets in Sand, Journal of Ocean and Wind Energy, 1(4), 231-239, 2014.
  • Villalobos, F.A., Model testing of foundations for offshore wind turbines, PhD Thesis, University of Oxford, United Kingdom, 2006.
  • Foglia A., Ibsen, L.B., Andersen, L.V., Roesen, H.R., Physical modelling of bucket foundation under long-term cyclic lateral loading, Proceedings of the Twenty-second International Offshore and Polar Engineering Conference, International Society of Offshore & Polar Engineers, Rhodes, Greece, 667-673, 2012.
  • Zhu, B., Byrne, B.W., Houlsby, G.T., Long-term lateral cyclic response of suction caisson foundations in sand, J. Geotech. Geoenviron. Eng., 139(1), 73–83, 2013.
  • Houlsby, G.T., Ibsen, L.B., Byrne, B.W., Suction Caissons for Wind Turbines. In: Gourvenec, Cassidy (Eds.), Frontiers in Offshore Geotechnics: ISFOG2005, Taylor & Francis Group, London, 2005.
  • Taşan, H.E., Numerische Untersuchungen zum Tragverhalten von Saugrohrgrün-dungen unter zyklisch axialen Druckeinwirkungen, Bautechnik, 92(9), 595–604, 2015.
  • Martin, G.R., Finn, W.D.L, Seed, H.B., Fundamentals of liquefaction under cyclic loading, Journal of the Geotechnical Engineering Division, 101(5), 423-438, 1975.
  • Andersen, K.H., Bearing capacity under cyclic loading - offshore, along the coast, and on land. The 21st Bjerrum Lecture presented in Oslo, 23 November 2007, Can. Geotech. J., 46(5), 513-535, 2009.
  • ANSYS, INC., Programmer‘s manual for ANSYS, Release 14.0., 2011
  • Bauer, E., Calibration of a comprehensive hypoplastic model for granular materials, Soils and Foundations, 36(1), 13-26, 1996.
  • Gudehus, G., A comprehensive constitutive equation for granular materials, Soils and Foundations, 36(1), 1-12, 1996.
  • Kolymbas, D., A rate-dependent constitutive equation for soils, Mech. Res. Comm., 4 (6), 367-372, 1977.
  • Wu, W., Hypoplasticity as a mathematical model for the mechanical behavior of granular materials, Publication Series of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe University, No: 129, Germany, 1992.
  • Niemunis, A., Herle, I., Hypoplastic model for cohesionless soils with elastic strain range, Mechanics of Cohesion-Fractional Materials, 2(4), 279-299, 1997.
  • von Wolffersdorff, P.-.A., Hypoplastic Relation for Granular Materials with a Predefined Limit State Surface, Mechanics of Cohesive-Frictional Materials, 1(3), 251-271, 1996.
  • J. Lanier, D. Caillerie, R. Chambonn, G. Viggiani, P. Bésuelle and J. Desrues, A general formulation of hypoplasticity, International Journal for Numerical and Analytical Methods in Geomechanics, 28, 1461-1478, 2004
  • Kolymbas, D., Eine konstitutive Theorie für Böden und andere körnige Stoffe, Veröffentlichung des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericana in Karlsruhe, Deutschland, 1988.
  • Herle, I., Hypoplastizität und Granulometrie einfacher Korngerüste, Veröffentlichung des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericana in Karlsruhe, Deutschland, 1997.
  • Vermeer P. A., Verruijt, A., An accuracy condition for consolidation by finite elements, International Journal for Numerical and Analytical Methods in Geomechanics, 5, 1-14, 1981.
  • Pastor, M., Li, T., Merodo, J. A. F., Stabilized finite elements for harmonic soil dynamics problems near the undrained-incompressible limit, Soil Dynamics and Earthquake Engineering, 16, 161-171, 1997.
  • Masud, A., Hughes, T. J. R., A stabilized mixed finite element method for Darcy flow, Computer Methods in Applied Mechanics and Engineering, 191, 4341- 4370, 2002.
  • Zienkiewicz, O. C., Qu, S., Taylor, R. L., Nakazawa, S., The patch test for mixed formulations, International Journal for Numerical Methods in Engineering, 23 (10), 1873-1883, 1986.
  • Babuška, I., The finite element method with lagrangian multipliers, Numerische Mathematik, 20 (3), 179-192, 1973.
  • Brezzi, F., On the existence, uniqueness and approximation of saddle point problems arising from lagrangian multipliers, RAIRO 8-R2, 129-151, 1974.
  • Taşan, H. E., Rackwitz F., Savidis, S., Behaviour of cyclic laterally loaded large diameter monopiles in saturated sand. 7th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE, Trondheim, Norway, 889-894, 2010.
  • Booker, J.R., The Consolidation of a Finite Layer Subject to Surface Loading, International Journal of Soils and Structures, 10(7), 1053-1065, 1974.
  • Offshore Standard DNV-OSJ101 – Design of Offshore Wind Turbine Structures, Det Norske Veritas January, 2014.
  • Ghosh, B., Madabhushi, S.P.G., A numerical investigation into effects of single and multiple frequency earthquake motions. Soil Dynamics and Earthquake Engineering, 23(8), 691-704, 2003.
  • Matesic, L., Vucetic, M., Strain-rate effect on soil secant shear modulus at small cyclic strains, J. Geotech. Geoenviron. Eng., 129(6), 536-549, 2003.
  • Rascol, E., Cyclic properties of sand: dynamic behaviour for seismic applications, PhD Thesis, École Polytechnique Fédérale de Lausanne EPFL, Switzerland, 2009.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Hacı Ercan Taşan

Cihan Taylan Akdağ Bu kişi benim

Yayımlanma Tarihi 1 Mayıs 2018
Gönderilme Tarihi 13 Eylül 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Taşan, H. E., & Akdağ, C. T. (2018). Açık Deniz Yapıları Kova Temel Sistemi Davranışı Üzerinde Tekrarlı Yük Frekansının Etkisi. Teknik Dergi, 29(3), 8411-8431. https://doi.org/10.18400/tekderg.337970
AMA Taşan HE, Akdağ CT. Açık Deniz Yapıları Kova Temel Sistemi Davranışı Üzerinde Tekrarlı Yük Frekansının Etkisi. Teknik Dergi. Mayıs 2018;29(3):8411-8431. doi:10.18400/tekderg.337970
Chicago Taşan, Hacı Ercan, ve Cihan Taylan Akdağ. “Açık Deniz Yapıları Kova Temel Sistemi Davranışı Üzerinde Tekrarlı Yük Frekansının Etkisi”. Teknik Dergi 29, sy. 3 (Mayıs 2018): 8411-31. https://doi.org/10.18400/tekderg.337970.
EndNote Taşan HE, Akdağ CT (01 Mayıs 2018) Açık Deniz Yapıları Kova Temel Sistemi Davranışı Üzerinde Tekrarlı Yük Frekansının Etkisi. Teknik Dergi 29 3 8411–8431.
IEEE H. E. Taşan ve C. T. Akdağ, “Açık Deniz Yapıları Kova Temel Sistemi Davranışı Üzerinde Tekrarlı Yük Frekansının Etkisi”, Teknik Dergi, c. 29, sy. 3, ss. 8411–8431, 2018, doi: 10.18400/tekderg.337970.
ISNAD Taşan, Hacı Ercan - Akdağ, Cihan Taylan. “Açık Deniz Yapıları Kova Temel Sistemi Davranışı Üzerinde Tekrarlı Yük Frekansının Etkisi”. Teknik Dergi 29/3 (Mayıs 2018), 8411-8431. https://doi.org/10.18400/tekderg.337970.
JAMA Taşan HE, Akdağ CT. Açık Deniz Yapıları Kova Temel Sistemi Davranışı Üzerinde Tekrarlı Yük Frekansının Etkisi. Teknik Dergi. 2018;29:8411–8431.
MLA Taşan, Hacı Ercan ve Cihan Taylan Akdağ. “Açık Deniz Yapıları Kova Temel Sistemi Davranışı Üzerinde Tekrarlı Yük Frekansının Etkisi”. Teknik Dergi, c. 29, sy. 3, 2018, ss. 8411-3, doi:10.18400/tekderg.337970.
Vancouver Taşan HE, Akdağ CT. Açık Deniz Yapıları Kova Temel Sistemi Davranışı Üzerinde Tekrarlı Yük Frekansının Etkisi. Teknik Dergi. 2018;29(3):8411-3.