Research Article
BibTex RIS Cite

Karkas Et Üretiminin Çevresel Etkilerinin Yaşam Döngüsü Analizi ile Belirlenmesi

Year 2023, , 1466 - 1480, 28.12.2023
https://doi.org/10.35414/akufemubid.1244199

Abstract

Bu çalışmada Afyonkarahisar Organize Sanayi Bölgesi’nde yer alan büyükbaş hayvan kesimi yapılan bir kesimhanenin Yaşam Döngüsü Analizi (YDA) ile çevresel etkileri ortaya konmuş ve çevresel etkilerin azaltılmasına yönelik alternatif senaryolar değerlendirilmiştir. Fonksiyonel birim olarak 1 kg karkas et alınmıştır. Sistem sınırı içerisinde canlı hayvanın transferi, karkas et üretimi ve et üreticisine transfer yer almaktadır. Çalışmada; abiyotik tüketim potansiyeli (ATP), abiyotik tüketim potansiyeli-fosil yakıtlar (ATP-fosil), küresel ısınma potansiyeli (KIP), ozon tabakası incelmesi potansiyeli (OTİP), insana toksisite potansiyeli (İTP), tatlı su canlılarına ekotoksisite potansiyeli (TSCEP), deniz canlılarına ekotoksisite potansiyeli (DCEP), kara canlılarına ekotoksisite potansiyeli (KCEP), fotokimyasal oksidan oluşumu potansiyeli (FOP), asidifikasyon potansiyeli (AP) ve ötrofikasyon potansiyeli (ÖP) etki kategorileri SimaPro 9.1.1 yazılımı ve CML-IA hesaplama metodu ile belirlenmiştir. Çevresel etkilerin azaltılmasına yönelik enerji ve transfer aşaması için alternatif senaryo geliştirilerek mevcut durum ile karşılaştırılmıştır. Şebeke elektriğine alternatif olarak jeotermal enerji, rüzgâr enerjisi, güneş enerjisi ve biyogaz enerjisi ile senaryolar ve üreticiye transfer aşamasında kullanılan araç tipine alternatif senaryo oluşturulmuştur. Mevcut tesisin çevresel etkileri incelendiğinde ATP-fosil ve OTİP dışındaki tüm etki kategorilerinde en yüksek katkının kesimhaneye transfer aşamasından (%94,72-%99,94) kaynaklandığı görülmüştür. Kesimhaneye transfer aşamasının ATP-fosil’e katkısı %62,97, OTİP’ye %83,11 iken temizlik aşamasının ATP-fosil’e katkısı %33,95; OTİP’ye %15,69’dur. Karkas et üretimi aşaması için önerilen alternatif enerji senaryoları AS-1, AS-2 ve AS-3; ATP etki kategorisi dışındaki 10 etki kategorisinde %95 civarında azalma sağlamıştır. Biyogaz enerjisinin ele alındığı AS-4 senaryosu, FOP ve AP etki kategorilerinde sırasıyla %34,78 ve %0,46 oranında artışa neden olmuştur. Üreticiye transfer aşaması için önerilen AS-5 senaryosu bütün etki kategorilerini %33,57-%76,31 oranında azaltmıştır.

Supporting Institution

İstanbul Üniversitesi-Cerrahpaşa Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

35203

Thanks

Bu çalışma İstanbul Üniversitesi-Cerrahpaşa Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir

References

  • Aberilla, J.M., Gallego-Schmid, A., Stamford, L., Azapagic, A., 2020, Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities, Applied Energy, 258, 114004.
  • Asem-Hiablie, S., Battagliese, T., Stackhouse-Lawson, K. R., Rotz, C.A., 2019, A life cycle assessment of the environmental impacts of a beef system in the USA, The International Journal of Life Cycle assessment, 24, 441–445.
  • Atilgan, B., & Azapagic, A., 2016, Renewable electricity in Turkey: Life cycle environmental impacts. Renewable Energy, 89, 649–657.
  • Bahadıroğlu, M., 2021, Life cycle assessment of waste management and energy consumption for a restaurant, Yüksek Lisans Tezi, Istanbul Technical University Graduate School, İstanbul, 93.
  • Bava, L., Zucali, M., Sandrucci, A., Tamburini, A., 2017, Environmental impact of the typical heavy pig production in Italy, Journal of Cleaner Production, 140, 685-691.
  • Bjørn, A., Laurent, A., Owsianiak, M., 2018. Life Cycle Assessment: Theory and Practice- Goal Definition. Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I. (Editors), ISBN 978-3-319-56475-3 (e-Book), 17-30.
  • Cesari V., Zucali M., Sandrucci A., Tamburini A., Bava L., Toschi I., 2016, Environmental impact assessment of an Italian vertically integrated broiler system through a Life Cycle approach, Journal of Cleaner Production, 16, 32085.
  • De Vries, M. and De Boer, I.J.M., 2010, Comparing environmental impacts for livestock products: A review of life cycle assessments, Livestock Science, 128, 1–11.
  • Djekic, I. and Tomasevic, I., 2016, Environmental impacts of the meat chain e Current status and future perspectives, Trends in Food Science & Technology, 54, 94–102.
  • Dorca-Preda, T., Mogensen, L., Kristense, T., Trydeman Knudsen, M., 2021, Environmental impact of Danish pork at slaughterhouse gate – a life cycle assessment following biological and technological changes over a 10-year period, Livestock Science, 251, 104622.
  • Eshel, G., Shepon, A., Makov, T., Milo, R., 2014. Land irrigation water, greenhouse gas, and reactive nitrogen burdens of meat eggs, and dairy production in the United States. Proc. Natl. Acad. Sci. U. S. 111, 11996-12001.
  • Fusi, A., Bacenetti, J., Fiala, M., Azapagic, A., 2016, Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion, Frontiers in Bioengineering and Biotechnology, 4: 26.
  • Geß A., Tolsdorf, A., Ko, N., 2022, A life cycle perspective of lamb meat production systems from Turkey and the EU, Small Ruminant Research 208, 106637.
  • Hijazi, O., Munro, S., Zerhusen, B., Effenberger, M., 2016, Review of life cycle assessment for biogas production in Europe, Renewable and Sustainable Energy Reviews, 54, 1291–130.
  • ISO, 2006. ISO14044:Environmental management-Life cycle assessmentrequirements and guidelines.The International Organization for Standardization (ISO), Geneva, Switzerland.
  • Kalhor, T., Rajabipour, A., Akram, A., Sharifi, M., 2016, Environmental impact assessment of chicken meat production using life cycle assessment, Information Processing in Agriculture, 3, 262-271.
  • Kanta, M.E.S., 2019. Environmental Impact Assessment Of Meat Product In Greece, Master of Science (MSc) in Environmental Management and Sustainability, School of Economic, Business Administration&Legal Studies, International Hellenic University, Thessaloniki-Greece, 85.
  • Li, J., Tarpani, R.R.Z., Stamford, L., Gallego-Schmid, A., 2023, Life cycle sustainability assessment and circularity of geothermal power plants, Sustainable Production and Consumption, 35, 141–156.
  • Mogensen, M., Nguyen, T.L.T., Madsen, N.T., Pontoppidan, O., Preda, T., Hermansen, J.E., 2016, Environmental impact of beef sourced from different production systems - focus on the slaughtering stage: input and output, Journal of Cleaner Production, 133, 284–293.
  • Nguyen, T.L.T., Hermansen, J.E. and Mogensen, L., 2010, Environmental consequences of different beef production systems in the EU, Journal of Cleaner Production, 18, 756–766.
  • Pelletier, N., Pirog, R., Rasmussen, R., 2010, Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States, Agricultural Systems 103, 380–389.
  • Perez-Martinez, M.M., Noguerol, R., Casales, B.I., Lois, R., Soto, B., 2018, Evaluation of environmental impact of two ready-to-eat canned meat products using Life Cycle Assessment, Journal of Food Engineering, 237, 118–127.
  • Qalase, C. and Harding, K.G., 2022, Eco-efficiency assessment of pork production through life-cycle assessment and product system value in South Africa, E3S Web of Conferences, 349, 13002, LCM 2021.
  • Santonja, G.G., Karlis, P., Stubdrup, K.R., Brinkmann, T., Roudier, S., 2019, Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries. Publications Office of the European Union, ISBN: 978-92-76-13091-8. DOI: 10.2760/243911
  • SERKA, 2015. TRA2 Bölgesi Kırmızı Et Sektörü, Stratejik Analiz, Serhat Kalkınma Ajansı.
  • SimaPro Database Manual-Methods Library, PRé Sustainability, various authors, 2022.
  • Skunca, D., Tomasevic, I., Nastasijevic, I., Tomovic, V., Djekic, I., 2018, Life cycle assessment of the chicken meat chain. Journal of Cleaner Production, 184, 440–450.
  • Şanal, İ., 2020. Profil boru üretiminin yaşam döngüsü değerlendirmesi, Yüksek Lisans tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 153.
  • Tsutsumi, M., Ono, Y., Ogasawara, H., Masayuki, H., 2017, Life-cycle impact assessment of organic and non-organic grass-fed beef production in Japan, Journal of Cleaner Production, 172, 2513–2520.
  • Vitali A., Grossi, G., Martino, G., Bernabucci, U., Nardone, A., Lacetera, N., 2018, Carbon footprint of organic beef meat from farm to fork: a case study of short supply chain, Science of Food and Agriculture, 14, 5518-5524.
  • Weber, C.L., Matthews, H.S., 2008, Food-miles and the relative climate impacts of food choices in the United States. Environmental Science Technology, 42, 10, 3508–3513.
  • Yıldırım, Y., 1998, Et Teknolojileri, Uludağ Üniversitesi Veteriner Fakültesi Yayınları, Bursa.
  • https://www.fao.org/partnerships/leap/en
  • https://rec.org.tr/wpcontent/uploads/2016/11/et_urunleri_rehberi.pdf (20.10.2023)
  • https://www.enerjiatlasi.com/jeotermal/ (21.07.2022)
  • https://www.enerjiatlasi.com/ruzgar-enerjisi-haritasi/afyon (21.07.2022)
  • https://www.enerjiatlasi.com/gunes/ (21.07.2022)
  • https://www.enerjiatlasi.com/biyogaz/ (21.07.2022)
  • https://motoreu.com/euro-emission-standards-and-their-meanings-blog (04.04.2022)
  • http://cml.leiden.edu/software/data-cmlia.html (07.12.2020)
  • https://www.mmo.org.tr/sites/default/files/TEG-2020 4.1_Elektrik%20%C3%9Cretimi_O%C4%9Fuz%20T%C3%BCrky%C4%B1lmaz%2BYusuf%20Bayrak%20_A.pdf
  • https://www.irena.org/publications/2017/Jul/Renewable-Energy-Statistics-2017 (24.01.2023)

Determination of Environmental Effects of Carcass Meat Production by Life Cycle Analysis

Year 2023, , 1466 - 1480, 28.12.2023
https://doi.org/10.35414/akufemubid.1244199

Abstract

In this study, the environmental effects of a slaughterhouse for cattle located in Afyonkarahisar Organized Industrial Zone were revealed by Life Cycle Analysis (LCA) and alternative scenarios were evaluated for reducing the environmental impacts. The functional unit for the analysis was 1 kg of carcass meat produced by the slaughterhouse. Transportation of the live cattle, production of carcass meat and its transfer to the meat producer are inside the system boundary. The impact categories, which included abiotic depletion potential (ADP), abiotic depletion potential-fossil fuels (ADP-fuels), global warming potential (GWP), ozone layer depletion potential (ODP), human toxicity potential (HTP), ecotoxicity potential to freshwater organisms (FAETP), ecotoxicity potential to marine organisms (MAETP), ecotoxicity potential to terrestrial organisms (TETP), photochemical oxidant formation potential (PhOP), acidification potential (AP), and eutrophication potential (EP) were evaluated by SimaPro version 9.1.1 software using the CML 2001 method. Alternative scenarios were developed for the energy and transfer stages to reduce environmental impacts and compared with the current situation. Scenarios were created using geothermal, wind, solar, and biogas energy as alternatives to

grid electricity, and the vehicle type used during the transfer stage to the meat manufacturer was chosen as an alternative scenario. The results showed that the transfer to the slaughterhouse stage had the highest contribution to all impact categories except for ADP-fuels and ODP, with a range of 94.72% to 99.94%. The transfer to the slaughterhouse stage had a 62.97% contribution to ADP-fuels and 83.11% contribution to ODP, while the cleaning stage had a 33.95% contribution to ADP-fuels and 15.69% contribution to ODP. The alternative energy scenarios proposed for the carcass meat production stage (AS-1, AS-2, and AS-3) provided a 95% reduction in 10 impact categories, except for the ADP impact category.The AS-4 scenario, which deals with biogas energy, resulted in an increase of 34.78% and 0.46% in the PhOP and AP impact categories, respectively. AS-5 scenario proposed for the transfer to the meat producer stage reduced all impact categories by 33.57%-76.31%.

Project Number

35203

References

  • Aberilla, J.M., Gallego-Schmid, A., Stamford, L., Azapagic, A., 2020, Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities, Applied Energy, 258, 114004.
  • Asem-Hiablie, S., Battagliese, T., Stackhouse-Lawson, K. R., Rotz, C.A., 2019, A life cycle assessment of the environmental impacts of a beef system in the USA, The International Journal of Life Cycle assessment, 24, 441–445.
  • Atilgan, B., & Azapagic, A., 2016, Renewable electricity in Turkey: Life cycle environmental impacts. Renewable Energy, 89, 649–657.
  • Bahadıroğlu, M., 2021, Life cycle assessment of waste management and energy consumption for a restaurant, Yüksek Lisans Tezi, Istanbul Technical University Graduate School, İstanbul, 93.
  • Bava, L., Zucali, M., Sandrucci, A., Tamburini, A., 2017, Environmental impact of the typical heavy pig production in Italy, Journal of Cleaner Production, 140, 685-691.
  • Bjørn, A., Laurent, A., Owsianiak, M., 2018. Life Cycle Assessment: Theory and Practice- Goal Definition. Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I. (Editors), ISBN 978-3-319-56475-3 (e-Book), 17-30.
  • Cesari V., Zucali M., Sandrucci A., Tamburini A., Bava L., Toschi I., 2016, Environmental impact assessment of an Italian vertically integrated broiler system through a Life Cycle approach, Journal of Cleaner Production, 16, 32085.
  • De Vries, M. and De Boer, I.J.M., 2010, Comparing environmental impacts for livestock products: A review of life cycle assessments, Livestock Science, 128, 1–11.
  • Djekic, I. and Tomasevic, I., 2016, Environmental impacts of the meat chain e Current status and future perspectives, Trends in Food Science & Technology, 54, 94–102.
  • Dorca-Preda, T., Mogensen, L., Kristense, T., Trydeman Knudsen, M., 2021, Environmental impact of Danish pork at slaughterhouse gate – a life cycle assessment following biological and technological changes over a 10-year period, Livestock Science, 251, 104622.
  • Eshel, G., Shepon, A., Makov, T., Milo, R., 2014. Land irrigation water, greenhouse gas, and reactive nitrogen burdens of meat eggs, and dairy production in the United States. Proc. Natl. Acad. Sci. U. S. 111, 11996-12001.
  • Fusi, A., Bacenetti, J., Fiala, M., Azapagic, A., 2016, Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion, Frontiers in Bioengineering and Biotechnology, 4: 26.
  • Geß A., Tolsdorf, A., Ko, N., 2022, A life cycle perspective of lamb meat production systems from Turkey and the EU, Small Ruminant Research 208, 106637.
  • Hijazi, O., Munro, S., Zerhusen, B., Effenberger, M., 2016, Review of life cycle assessment for biogas production in Europe, Renewable and Sustainable Energy Reviews, 54, 1291–130.
  • ISO, 2006. ISO14044:Environmental management-Life cycle assessmentrequirements and guidelines.The International Organization for Standardization (ISO), Geneva, Switzerland.
  • Kalhor, T., Rajabipour, A., Akram, A., Sharifi, M., 2016, Environmental impact assessment of chicken meat production using life cycle assessment, Information Processing in Agriculture, 3, 262-271.
  • Kanta, M.E.S., 2019. Environmental Impact Assessment Of Meat Product In Greece, Master of Science (MSc) in Environmental Management and Sustainability, School of Economic, Business Administration&Legal Studies, International Hellenic University, Thessaloniki-Greece, 85.
  • Li, J., Tarpani, R.R.Z., Stamford, L., Gallego-Schmid, A., 2023, Life cycle sustainability assessment and circularity of geothermal power plants, Sustainable Production and Consumption, 35, 141–156.
  • Mogensen, M., Nguyen, T.L.T., Madsen, N.T., Pontoppidan, O., Preda, T., Hermansen, J.E., 2016, Environmental impact of beef sourced from different production systems - focus on the slaughtering stage: input and output, Journal of Cleaner Production, 133, 284–293.
  • Nguyen, T.L.T., Hermansen, J.E. and Mogensen, L., 2010, Environmental consequences of different beef production systems in the EU, Journal of Cleaner Production, 18, 756–766.
  • Pelletier, N., Pirog, R., Rasmussen, R., 2010, Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States, Agricultural Systems 103, 380–389.
  • Perez-Martinez, M.M., Noguerol, R., Casales, B.I., Lois, R., Soto, B., 2018, Evaluation of environmental impact of two ready-to-eat canned meat products using Life Cycle Assessment, Journal of Food Engineering, 237, 118–127.
  • Qalase, C. and Harding, K.G., 2022, Eco-efficiency assessment of pork production through life-cycle assessment and product system value in South Africa, E3S Web of Conferences, 349, 13002, LCM 2021.
  • Santonja, G.G., Karlis, P., Stubdrup, K.R., Brinkmann, T., Roudier, S., 2019, Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries. Publications Office of the European Union, ISBN: 978-92-76-13091-8. DOI: 10.2760/243911
  • SERKA, 2015. TRA2 Bölgesi Kırmızı Et Sektörü, Stratejik Analiz, Serhat Kalkınma Ajansı.
  • SimaPro Database Manual-Methods Library, PRé Sustainability, various authors, 2022.
  • Skunca, D., Tomasevic, I., Nastasijevic, I., Tomovic, V., Djekic, I., 2018, Life cycle assessment of the chicken meat chain. Journal of Cleaner Production, 184, 440–450.
  • Şanal, İ., 2020. Profil boru üretiminin yaşam döngüsü değerlendirmesi, Yüksek Lisans tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 153.
  • Tsutsumi, M., Ono, Y., Ogasawara, H., Masayuki, H., 2017, Life-cycle impact assessment of organic and non-organic grass-fed beef production in Japan, Journal of Cleaner Production, 172, 2513–2520.
  • Vitali A., Grossi, G., Martino, G., Bernabucci, U., Nardone, A., Lacetera, N., 2018, Carbon footprint of organic beef meat from farm to fork: a case study of short supply chain, Science of Food and Agriculture, 14, 5518-5524.
  • Weber, C.L., Matthews, H.S., 2008, Food-miles and the relative climate impacts of food choices in the United States. Environmental Science Technology, 42, 10, 3508–3513.
  • Yıldırım, Y., 1998, Et Teknolojileri, Uludağ Üniversitesi Veteriner Fakültesi Yayınları, Bursa.
  • https://www.fao.org/partnerships/leap/en
  • https://rec.org.tr/wpcontent/uploads/2016/11/et_urunleri_rehberi.pdf (20.10.2023)
  • https://www.enerjiatlasi.com/jeotermal/ (21.07.2022)
  • https://www.enerjiatlasi.com/ruzgar-enerjisi-haritasi/afyon (21.07.2022)
  • https://www.enerjiatlasi.com/gunes/ (21.07.2022)
  • https://www.enerjiatlasi.com/biyogaz/ (21.07.2022)
  • https://motoreu.com/euro-emission-standards-and-their-meanings-blog (04.04.2022)
  • http://cml.leiden.edu/software/data-cmlia.html (07.12.2020)
  • https://www.mmo.org.tr/sites/default/files/TEG-2020 4.1_Elektrik%20%C3%9Cretimi_O%C4%9Fuz%20T%C3%BCrky%C4%B1lmaz%2BYusuf%20Bayrak%20_A.pdf
  • https://www.irena.org/publications/2017/Jul/Renewable-Energy-Statistics-2017 (24.01.2023)
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Energy Systems Engineering (Other)
Journal Section Articles
Authors

Nur Seda Şahin 0000-0002-0528-8504

Yasemin Kaya 0000-0001-7880-7363

İlda Vergili 0000-0001-9083-3097

Project Number 35203
Early Pub Date December 22, 2023
Publication Date December 28, 2023
Submission Date January 29, 2023
Published in Issue Year 2023

Cite

APA Şahin, N. S., Kaya, Y., & Vergili, İ. (2023). Karkas Et Üretiminin Çevresel Etkilerinin Yaşam Döngüsü Analizi ile Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(6), 1466-1480. https://doi.org/10.35414/akufemubid.1244199
AMA Şahin NS, Kaya Y, Vergili İ. Karkas Et Üretiminin Çevresel Etkilerinin Yaşam Döngüsü Analizi ile Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2023;23(6):1466-1480. doi:10.35414/akufemubid.1244199
Chicago Şahin, Nur Seda, Yasemin Kaya, and İlda Vergili. “Karkas Et Üretiminin Çevresel Etkilerinin Yaşam Döngüsü Analizi Ile Belirlenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 6 (December 2023): 1466-80. https://doi.org/10.35414/akufemubid.1244199.
EndNote Şahin NS, Kaya Y, Vergili İ (December 1, 2023) Karkas Et Üretiminin Çevresel Etkilerinin Yaşam Döngüsü Analizi ile Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 6 1466–1480.
IEEE N. S. Şahin, Y. Kaya, and İ. Vergili, “Karkas Et Üretiminin Çevresel Etkilerinin Yaşam Döngüsü Analizi ile Belirlenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 6, pp. 1466–1480, 2023, doi: 10.35414/akufemubid.1244199.
ISNAD Şahin, Nur Seda et al. “Karkas Et Üretiminin Çevresel Etkilerinin Yaşam Döngüsü Analizi Ile Belirlenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/6 (December 2023), 1466-1480. https://doi.org/10.35414/akufemubid.1244199.
JAMA Şahin NS, Kaya Y, Vergili İ. Karkas Et Üretiminin Çevresel Etkilerinin Yaşam Döngüsü Analizi ile Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1466–1480.
MLA Şahin, Nur Seda et al. “Karkas Et Üretiminin Çevresel Etkilerinin Yaşam Döngüsü Analizi Ile Belirlenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 6, 2023, pp. 1466-80, doi:10.35414/akufemubid.1244199.
Vancouver Şahin NS, Kaya Y, Vergili İ. Karkas Et Üretiminin Çevresel Etkilerinin Yaşam Döngüsü Analizi ile Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(6):1466-80.