Research Article
BibTex RIS Cite

FOPID Controller Design for a Buck Converter System Using a Novel Hybrid Cooperation Search Algorithm with Pattern Search for Parameter Tuning

Year 2023, Volume: 10 Issue: 4, 417 - 441, 31.12.2023
https://doi.org/10.54287/gujsa.1357216

Abstract

This research introduces a novel metaheuristic algorithm, OCSAPS, representing an upgraded cooperation search algorithm (CSA) version. OCSAPS incorporates opposition-based learning (OBL) and pattern search (PS) algorithms. The proposed algorithm's application aims to develop a fractional order proportional-integral-derivative (FOPID) controller tailored for a buck converter system. The efficacy of the proposed algorithm is assessed by statistical boxplot and convergence response analyses. Furthermore, the performance of the OCSAPS-based FOPID-controlled buck converter system is benchmarked against CSA, Harris hawk optimization (HHO), and genetic algorithm (GA). This comparative analysis encompasses transient and frequency responses, performance indices, and robustness analysis. The outcomes of this comparison highlight the distinctive advantages of the proposed approach-based system. Moreover, the proposed approach's performance was compared with six other approaches used to control buck converter systems similarly regarding both time and frequency domain responses. Overall, the findings underscore the efficacy of the OCSAPS algorithm as a robust solution for designing FOPID controllers in buck converter systems.

Ethical Statement

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Supporting Institution

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

  • Al-Majidi, S. D., Abbod, M. F., & Al-Raweshidy H. S. (2019). Design of an Efficient Maximum Power Point Tracker Based on ANFIS Using an Experimental Photovoltaic System Data. Electronics, 8(8), 858. https://www.doi.org/10.3390/electronics8080858
  • Boudjehem, B., & Boudjehem, D. (2016). Fractional PID Controller Design Based on Minimizing Performance indices. IFAC-PapersOnLine, 49(9), 164-168. https://www.doi.org/10.1016/j.ifacol.2016.07.522
  • Cech, M., & Schlegel, M. (2013, February 25-28). Generalized robust stability regions for fractional PID controllers. In: Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), (pp. 76-81). https://www.doi.org/10.1109/ICIT.2013.6505651
  • Chevalier, A., Francis, C., Copot, C., Ionescu, C. M., & Keyser, R. D. (2019). Fractional-order PID design: Towards transition from state-of-art to state-of-use. ISA Transactions, 84, 178-186. https://www.doi.org/10.1016/j.isatra.2018.09.017
  • Das, S., Pan, I., Das, S., & Gupta, A. (2012). A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Engineering Applications of Artificial Intelligence, 25(2), 430-442. https://www.doi.org/10.1016/j.engappai.2011.10.004
  • Dastjerdi, A. A., Vinagre, B. M., Chen, Y. Q., & HosseinNia, S. H. (2019). Linear fractional order controllers; A survey in the frequency domain. Annual Reviews in Control, 47, 51-70. https://www.doi.org/10.1016/j.arcontrol.2019.03.008
  • Demir, M. H., & Demirok, M. (2023). Designs of Particle-Swarm-Optimization-Based Intelligent PID Controllers and DC/DC Buck Converters for PEM Fuel-Cell-Powered Four-Wheeled Automated Guided Vehicle. Applied Sciences, 13(5), 2919. https://www.doi.org/10.3390/app13052919
  • Dolai, S. K., Mondal, A., & Sarkar, P. (2022). Discretization of Fractional Order Operator in Delta Domain. Gazi University Journal of Science Part A: Engineering and Innovation, 9(4), 401-420. https://www.doi.org/10.54287/gujsa.1167156
  • Erickson, R. W., & Maksimović, D. (2000). Fundamentals of Power Electronics (Second Edition). Springer.
  • Eshaghi, S., & Tavazoei, M. S. (2023). Finiteness conditions for performance indices in generalized fractional-order systems defined based on the regularized Prabhakar derivative. Communications in Nonlinear Science and Numerical Simulation, 117, 106979. https://www.doi.org/10.1016/j.cnsns.2022.106979
  • Feng, Z., Niu, W., & Liu, S. (2021). Cooperation Search Algorithm: A Novel Metaheuristic Evolutionary Intelligence Algorithm for Numerical Optimization and Engineering Optimization Problems. Applied Soft Computing, 98, 106734. https://www.doi.org/10.1016/j.asoc.2020.106734
  • Feng, Z. K., Shi, P. F., Yang, T., Niu, W. J., Zhou, J. Z., & Cheng, C. T. (2022). Parallel cooperation search algorithm and artificial intelligence method for streamflow time series forecasting. Journal of Hydrology, 606, 127434. https://www.doi.org/10.1016/j.jhydrol.2022.127434
  • Gaing, Z. L. (2004). A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE Transactions on Energy Conversion, 19(2), 384-391. https://www.doi.org/10.1109/TEC.2003.821821
  • Hekimoğlu, B. (2019). Optimal Tuning of Fractional Order PID Controller for DC Motor Speed Control via Chaotic Atom Search Optimization Algorithm. IEEE Access, 7, 38100-38114. https://www.doi.org/10.1109/ACCESS.2019.2905961
  • Hekimoğlu, B. (2023). Determination of AVR System PID Controller Parameters Using Improved Variants of Reptile Search Algorithm and a Novel Objective Function. Energy Engineering, 120(7), 1515-1540. https://www.doi.org/10.32604/ee.2023.029024
  • Hekimoğlu, B., & Ekinci, S. (2020). Optimally Designed PID Controller for A DC-DC Buck Converter via A Hybrid Whale Optimization Algorithm with Simulated Annealing. Electrica, 20(1), 19-27. https://www.doi.org/10.5152/electrica.2020.19034
  • Hsieh, C. H., & Chou, J. H. (2007). Design of optimal PID controllers for pwm feedback systems with bilinear plants. IEEE Transactions on Control Systems Technology, 15(6), 1075-1079. https://www.doi.org/10.1109/TCST.2007.908084
  • Izci, D., & Ekinci, S. (2022). A novel improved version of hunger games search algorithm for function optimization and efficient controller design of buck converter system. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 2, 100039. https://www.doi.org/10.1016/j.prime.2022.100039
  • Izci, D., Ekinci, S., & Hekimoğlu, B. (2022a). Fractional-Order PID Controller Design for Buck Converter System via Hybrid Lévy Flight Distribution and Simulated Annealing Algorithm. Arabian Journal for Science and Engineering, 47, 13729-13747. https://www.doi.org/10.1007/s13369-021-06383-z
  • Izci, D., Ekinci, S., & Hekimoğlu, B. (2022b). A Novel Modified Lévy Flight Distribution Algorithm to Tune Proportional, Integral, Derivative and Acceleration Controller on Buck Converter System. Transactions of the Institute of Measurement and Control, 44(2), 393-409. https://www.doi.org/10.1177/01423312211036591
  • Izci, D., Hekimoğlu, B., & Ekinci, S. (2022c). A New Artificial Ecosystem-Based Optimization Integrated with Nelder-Mead Method for PID Controller Design of Buck Converter. Alexandria Engineering Journal, 61(3), 2030-2044. https://www.doi.org/10.1016/j.aej.2021.07.037
  • Izci, D., Ekinci, S., & Zeynelgil, H. L. (2023). Controlling an automatic voltage regulator using a novel Harris hawks and simulated annealing optimization technique. Advanced Control for Applications: Engineering and Industrial Systems, e121. https://www.doi.org/10.1002/adc2.121
  • Lee, Y. S., Wang, J. S., & Hui, S. Y. R. (1997). Modeling, Analysis, and Application of Buck Converters in Discontinuous-Input-Voltage Mode Operation. IEEE Transactions on Power Electronics, 12(2), 350-360. https://www.doi.org/10.1109/63.558762
  • Li, Y., & Zhao, Y. (2015, May 23-25). Memory identification of fractional order systems: Background and theory. In: Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC), (pp. 1038-1043). https://www.doi.org/10.1109/CCDC.2015.7162070
  • Maâmar, B., & Rachid, M. (2014). IMC-PID-fractional-order-filter controllers design for integer order systems. ISA Transactions, 53(5), 1620-1628. https://www.doi.org/10.1016/j.isatra.2014.05.007
  • Martinez-Patiño, L. M., Perez-Pinal, F. J., Soriano-Sánchez, A. G., Rico-Secades, M., Zarate-Orduño, C., & Nuñez-Perez, J. C. (2023). Fractional PID Controller for Voltage-Lift Converters. Fractal and Fractional, 7(7), 542. https://www.doi.org/10.3390/fractalfract7070542
  • Micev, M., Ćalasan, M., & Oliva, D. (2020). Fractional Order PID Controller Design for an AVR System Using Chaotic Yellow Saddle Goatfish Algorithm. Mathematics, 8(7), 1182. https://www.doi.org/10.3390/math8071182
  • Mohd Tumari, M. Z., Ahmad, M. A., Suid, M. H., & Hao, M. R. (2023). An Improved Marine Predators Algorithm-Tuned Fractional-Order PID Controller for Automatic Voltage Regulator System. Fractal and Fractional, 7(7), 561. https://www.doi.org/10.3390/fractalfract7070561
  • Monje, C. A., Vinagre, B. M., Feliu, V., & Chen, Y. Q. (2008). Tuning and auto-tuning of fractional order controllers for industry applications. Control Engineering Practice, 16, 798-812. https://www.doi.org/10.1016/j.conengprac.2007.08.006
  • Ortatepe, Z. (2023). Genetic Algorithm based PID Tuning Software Design and Implementation for a DC Motor Control System. Gazi University Journal of Science Part A: Engineering and Innovation, 10(3), 286-300. https://www.doi.org/10.54287/gujsa.1342905
  • Ortiz-Quisbert, M. E., Duarte-Mermoud, M. A., Milla, F., Castro-Linares, R., & Lefranc, G. (2018). Optimal fractional order adaptive controllers for AVR applications. Electrical Engineering, 100, 267-283. https://www.doi.org/10.1007/s00202-016-0502-2
  • Oustaloup, A., Levron, F., Mathieu B., & Nanot, F. M. (2000). Frequency-Band Complex Noninteger Differentiator: Characterization and Synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(1), 25-39. https://www.doi.org/10.1109/81.817385
  • Pan, F., & Liu, L. (2016, May 28-30). Research on different integral performance indices applied on fractional-order systems. In: Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), (pp. 324-328). https://www.doi.org/10.1109/CCDC.2016.7531003
  • Podlubny, I. (1999). Fractional-Order Systems and PIλDμ-Controllers. IEEE Transactions on Automatic Control, 44(1), 208-214. https://www.doi.org/10.1109/9.739144
  • Ranjan, A., & Mehta, U. (2023). Fractional-Order Tilt Integral Derivative Controller Design Using IMC Scheme for Unstable Time-Delay Processes. Journal of Control, Automation and Electrical Systems, 34, 907-925. https://www.doi.org/10.1007/s40313-023-01020-6
  • Sangeetha, S., Sri Revathi, B., Balamurugan, K., & Suresh G. (2023). Performance analysis of buck converter with fractional PID controller using hybrid technique. Robotics and Autonomous Systems, 169, 104515. https://www.doi.org/10.1016/j.robot.2023.104515
  • Shah, P., & Agashe, S. (2016). Review of fractional PID controller. Mechatronics, 38, 29-41. https://www.doi.org/10.1016/j.mechatronics.2016.06.005
  • Smedley, K., & Cuk, S. (1994). Switching Flow-Graph Nonlinear Modeling Technique. IEEE Transactions on Power Electronics, 9(4), 405-413. https://www.doi.org/10.1109/63.318899
  • Tizhoosh, H. R. (2005, November 28-30). Opposition-Based Learning: A New Scheme for Machine Intelligence. In: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), (pp. 695-701). https://www.doi.org/10.1109/CIMCA.2005.1631345
  • Torczon, V. (1989). Multi-Directional Search: A Direct Search Algorithm for Parallel Machines. PhD Thesis, Rice University, Houston, Texas, USA.
  • Torczon, V. (1997). On the Convergence of Pattern Search Algorithms. SIAM Journal on Optimization, 7(1), 1-25. https://www.doi.org/10.1137/S1052623493250780
  • Wang, Z., Li, S., Wang, J., & Li, Q. (2017). Robust control for disturbed buck converters based on two GPI observers. Control Engineering Practice, 66, 13-22. https://www.doi.org/10.1016/j.conengprac.2017.06.001
  • Warrier, P., & Shah, P. (2021). Optimal Fractional PID Controller for Buck Converter Using Cohort Intelligent Algorithm. Applied System Innovation, 4(3):50. https://www.doi.org/10.3390/asi4030050
  • Zhang, B., & Qiu, D. (2014). Sneak Circuits of DC‐DC Converters. In: Sneak Circuits of Power Electronic Converters (pp. 59-103). IEEE. https://www.doi.org/10.1002/9781118379950.ch3
Year 2023, Volume: 10 Issue: 4, 417 - 441, 31.12.2023
https://doi.org/10.54287/gujsa.1357216

Abstract

References

  • Al-Majidi, S. D., Abbod, M. F., & Al-Raweshidy H. S. (2019). Design of an Efficient Maximum Power Point Tracker Based on ANFIS Using an Experimental Photovoltaic System Data. Electronics, 8(8), 858. https://www.doi.org/10.3390/electronics8080858
  • Boudjehem, B., & Boudjehem, D. (2016). Fractional PID Controller Design Based on Minimizing Performance indices. IFAC-PapersOnLine, 49(9), 164-168. https://www.doi.org/10.1016/j.ifacol.2016.07.522
  • Cech, M., & Schlegel, M. (2013, February 25-28). Generalized robust stability regions for fractional PID controllers. In: Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), (pp. 76-81). https://www.doi.org/10.1109/ICIT.2013.6505651
  • Chevalier, A., Francis, C., Copot, C., Ionescu, C. M., & Keyser, R. D. (2019). Fractional-order PID design: Towards transition from state-of-art to state-of-use. ISA Transactions, 84, 178-186. https://www.doi.org/10.1016/j.isatra.2018.09.017
  • Das, S., Pan, I., Das, S., & Gupta, A. (2012). A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Engineering Applications of Artificial Intelligence, 25(2), 430-442. https://www.doi.org/10.1016/j.engappai.2011.10.004
  • Dastjerdi, A. A., Vinagre, B. M., Chen, Y. Q., & HosseinNia, S. H. (2019). Linear fractional order controllers; A survey in the frequency domain. Annual Reviews in Control, 47, 51-70. https://www.doi.org/10.1016/j.arcontrol.2019.03.008
  • Demir, M. H., & Demirok, M. (2023). Designs of Particle-Swarm-Optimization-Based Intelligent PID Controllers and DC/DC Buck Converters for PEM Fuel-Cell-Powered Four-Wheeled Automated Guided Vehicle. Applied Sciences, 13(5), 2919. https://www.doi.org/10.3390/app13052919
  • Dolai, S. K., Mondal, A., & Sarkar, P. (2022). Discretization of Fractional Order Operator in Delta Domain. Gazi University Journal of Science Part A: Engineering and Innovation, 9(4), 401-420. https://www.doi.org/10.54287/gujsa.1167156
  • Erickson, R. W., & Maksimović, D. (2000). Fundamentals of Power Electronics (Second Edition). Springer.
  • Eshaghi, S., & Tavazoei, M. S. (2023). Finiteness conditions for performance indices in generalized fractional-order systems defined based on the regularized Prabhakar derivative. Communications in Nonlinear Science and Numerical Simulation, 117, 106979. https://www.doi.org/10.1016/j.cnsns.2022.106979
  • Feng, Z., Niu, W., & Liu, S. (2021). Cooperation Search Algorithm: A Novel Metaheuristic Evolutionary Intelligence Algorithm for Numerical Optimization and Engineering Optimization Problems. Applied Soft Computing, 98, 106734. https://www.doi.org/10.1016/j.asoc.2020.106734
  • Feng, Z. K., Shi, P. F., Yang, T., Niu, W. J., Zhou, J. Z., & Cheng, C. T. (2022). Parallel cooperation search algorithm and artificial intelligence method for streamflow time series forecasting. Journal of Hydrology, 606, 127434. https://www.doi.org/10.1016/j.jhydrol.2022.127434
  • Gaing, Z. L. (2004). A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE Transactions on Energy Conversion, 19(2), 384-391. https://www.doi.org/10.1109/TEC.2003.821821
  • Hekimoğlu, B. (2019). Optimal Tuning of Fractional Order PID Controller for DC Motor Speed Control via Chaotic Atom Search Optimization Algorithm. IEEE Access, 7, 38100-38114. https://www.doi.org/10.1109/ACCESS.2019.2905961
  • Hekimoğlu, B. (2023). Determination of AVR System PID Controller Parameters Using Improved Variants of Reptile Search Algorithm and a Novel Objective Function. Energy Engineering, 120(7), 1515-1540. https://www.doi.org/10.32604/ee.2023.029024
  • Hekimoğlu, B., & Ekinci, S. (2020). Optimally Designed PID Controller for A DC-DC Buck Converter via A Hybrid Whale Optimization Algorithm with Simulated Annealing. Electrica, 20(1), 19-27. https://www.doi.org/10.5152/electrica.2020.19034
  • Hsieh, C. H., & Chou, J. H. (2007). Design of optimal PID controllers for pwm feedback systems with bilinear plants. IEEE Transactions on Control Systems Technology, 15(6), 1075-1079. https://www.doi.org/10.1109/TCST.2007.908084
  • Izci, D., & Ekinci, S. (2022). A novel improved version of hunger games search algorithm for function optimization and efficient controller design of buck converter system. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 2, 100039. https://www.doi.org/10.1016/j.prime.2022.100039
  • Izci, D., Ekinci, S., & Hekimoğlu, B. (2022a). Fractional-Order PID Controller Design for Buck Converter System via Hybrid Lévy Flight Distribution and Simulated Annealing Algorithm. Arabian Journal for Science and Engineering, 47, 13729-13747. https://www.doi.org/10.1007/s13369-021-06383-z
  • Izci, D., Ekinci, S., & Hekimoğlu, B. (2022b). A Novel Modified Lévy Flight Distribution Algorithm to Tune Proportional, Integral, Derivative and Acceleration Controller on Buck Converter System. Transactions of the Institute of Measurement and Control, 44(2), 393-409. https://www.doi.org/10.1177/01423312211036591
  • Izci, D., Hekimoğlu, B., & Ekinci, S. (2022c). A New Artificial Ecosystem-Based Optimization Integrated with Nelder-Mead Method for PID Controller Design of Buck Converter. Alexandria Engineering Journal, 61(3), 2030-2044. https://www.doi.org/10.1016/j.aej.2021.07.037
  • Izci, D., Ekinci, S., & Zeynelgil, H. L. (2023). Controlling an automatic voltage regulator using a novel Harris hawks and simulated annealing optimization technique. Advanced Control for Applications: Engineering and Industrial Systems, e121. https://www.doi.org/10.1002/adc2.121
  • Lee, Y. S., Wang, J. S., & Hui, S. Y. R. (1997). Modeling, Analysis, and Application of Buck Converters in Discontinuous-Input-Voltage Mode Operation. IEEE Transactions on Power Electronics, 12(2), 350-360. https://www.doi.org/10.1109/63.558762
  • Li, Y., & Zhao, Y. (2015, May 23-25). Memory identification of fractional order systems: Background and theory. In: Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC), (pp. 1038-1043). https://www.doi.org/10.1109/CCDC.2015.7162070
  • Maâmar, B., & Rachid, M. (2014). IMC-PID-fractional-order-filter controllers design for integer order systems. ISA Transactions, 53(5), 1620-1628. https://www.doi.org/10.1016/j.isatra.2014.05.007
  • Martinez-Patiño, L. M., Perez-Pinal, F. J., Soriano-Sánchez, A. G., Rico-Secades, M., Zarate-Orduño, C., & Nuñez-Perez, J. C. (2023). Fractional PID Controller for Voltage-Lift Converters. Fractal and Fractional, 7(7), 542. https://www.doi.org/10.3390/fractalfract7070542
  • Micev, M., Ćalasan, M., & Oliva, D. (2020). Fractional Order PID Controller Design for an AVR System Using Chaotic Yellow Saddle Goatfish Algorithm. Mathematics, 8(7), 1182. https://www.doi.org/10.3390/math8071182
  • Mohd Tumari, M. Z., Ahmad, M. A., Suid, M. H., & Hao, M. R. (2023). An Improved Marine Predators Algorithm-Tuned Fractional-Order PID Controller for Automatic Voltage Regulator System. Fractal and Fractional, 7(7), 561. https://www.doi.org/10.3390/fractalfract7070561
  • Monje, C. A., Vinagre, B. M., Feliu, V., & Chen, Y. Q. (2008). Tuning and auto-tuning of fractional order controllers for industry applications. Control Engineering Practice, 16, 798-812. https://www.doi.org/10.1016/j.conengprac.2007.08.006
  • Ortatepe, Z. (2023). Genetic Algorithm based PID Tuning Software Design and Implementation for a DC Motor Control System. Gazi University Journal of Science Part A: Engineering and Innovation, 10(3), 286-300. https://www.doi.org/10.54287/gujsa.1342905
  • Ortiz-Quisbert, M. E., Duarte-Mermoud, M. A., Milla, F., Castro-Linares, R., & Lefranc, G. (2018). Optimal fractional order adaptive controllers for AVR applications. Electrical Engineering, 100, 267-283. https://www.doi.org/10.1007/s00202-016-0502-2
  • Oustaloup, A., Levron, F., Mathieu B., & Nanot, F. M. (2000). Frequency-Band Complex Noninteger Differentiator: Characterization and Synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(1), 25-39. https://www.doi.org/10.1109/81.817385
  • Pan, F., & Liu, L. (2016, May 28-30). Research on different integral performance indices applied on fractional-order systems. In: Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), (pp. 324-328). https://www.doi.org/10.1109/CCDC.2016.7531003
  • Podlubny, I. (1999). Fractional-Order Systems and PIλDμ-Controllers. IEEE Transactions on Automatic Control, 44(1), 208-214. https://www.doi.org/10.1109/9.739144
  • Ranjan, A., & Mehta, U. (2023). Fractional-Order Tilt Integral Derivative Controller Design Using IMC Scheme for Unstable Time-Delay Processes. Journal of Control, Automation and Electrical Systems, 34, 907-925. https://www.doi.org/10.1007/s40313-023-01020-6
  • Sangeetha, S., Sri Revathi, B., Balamurugan, K., & Suresh G. (2023). Performance analysis of buck converter with fractional PID controller using hybrid technique. Robotics and Autonomous Systems, 169, 104515. https://www.doi.org/10.1016/j.robot.2023.104515
  • Shah, P., & Agashe, S. (2016). Review of fractional PID controller. Mechatronics, 38, 29-41. https://www.doi.org/10.1016/j.mechatronics.2016.06.005
  • Smedley, K., & Cuk, S. (1994). Switching Flow-Graph Nonlinear Modeling Technique. IEEE Transactions on Power Electronics, 9(4), 405-413. https://www.doi.org/10.1109/63.318899
  • Tizhoosh, H. R. (2005, November 28-30). Opposition-Based Learning: A New Scheme for Machine Intelligence. In: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), (pp. 695-701). https://www.doi.org/10.1109/CIMCA.2005.1631345
  • Torczon, V. (1989). Multi-Directional Search: A Direct Search Algorithm for Parallel Machines. PhD Thesis, Rice University, Houston, Texas, USA.
  • Torczon, V. (1997). On the Convergence of Pattern Search Algorithms. SIAM Journal on Optimization, 7(1), 1-25. https://www.doi.org/10.1137/S1052623493250780
  • Wang, Z., Li, S., Wang, J., & Li, Q. (2017). Robust control for disturbed buck converters based on two GPI observers. Control Engineering Practice, 66, 13-22. https://www.doi.org/10.1016/j.conengprac.2017.06.001
  • Warrier, P., & Shah, P. (2021). Optimal Fractional PID Controller for Buck Converter Using Cohort Intelligent Algorithm. Applied System Innovation, 4(3):50. https://www.doi.org/10.3390/asi4030050
  • Zhang, B., & Qiu, D. (2014). Sneak Circuits of DC‐DC Converters. In: Sneak Circuits of Power Electronic Converters (pp. 59-103). IEEE. https://www.doi.org/10.1002/9781118379950.ch3
There are 44 citations in total.

Details

Primary Language English
Subjects Control Theoryand Applications
Journal Section Electronics, Sensors and Digital Hardware
Authors

Cihan Ersalı 0000-0001-8368-1195

Baran Hekimoğlu 0000-0002-1839-025X

Early Pub Date December 11, 2023
Publication Date December 31, 2023
Submission Date September 8, 2023
Published in Issue Year 2023 Volume: 10 Issue: 4

Cite

APA Ersalı, C., & Hekimoğlu, B. (2023). FOPID Controller Design for a Buck Converter System Using a Novel Hybrid Cooperation Search Algorithm with Pattern Search for Parameter Tuning. Gazi University Journal of Science Part A: Engineering and Innovation, 10(4), 417-441. https://doi.org/10.54287/gujsa.1357216