Research Article
BibTex RIS Cite

Free-standing and Flexible MnO2/Graphene Paper Electrode: A Novel Amperometric Sensor for Dopamine Detection

Year 2020, , 22 - 34, 15.01.2020
https://doi.org/10.17714/gumusfenbil.562555

Abstract

In this study, free-standing
MnO2 coated reduced graphene oxide (MnO2/rGO) paper with
high flexibility and durability was prepared. As-prepared MnO2/rGO
paper was characterized by scanning electron microscopy-energy-dispersive X-ray
spectroscopy (SEM-EDS), X-ray diffraction spectroscopy (XRD), X-ray
photoelectron spectroscopy (XPS) and Raman spectroscopy. The electrochemical
behavior of dopamine (DA) was investigated on flexible MnO2/rGO
paper with cyclic voltammetry and amperometry methods. Electrochemical results
have shown that the flexible MnO2/rGO paper electrode exhibits
excellent electrocatalytic activity to DA due to its high specific surface
area. In addition, the obtained flexible electrochemical sensor showed a wide
linear range, a low detection limit and a very sensitive response for the amperometric
determination of DA.

References

  • Bromberg-Martin, E.S., Matsumoto, M. ve Hikosaka, O., 2010. Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. Neuron, 68, 815-834.
  • Cançado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.VO., Lombardo, A., Kulmala, T.S. ve Ferrari, A.C., 2011. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett., 11, 3190.
  • Chen, J., Bi, H., Sun, S., Tang, Y., Zhao, W., Lin, T., Wan, D., Huang, F., Zhou, X., Xie, X. ve Jiang, M., 2013. Highly Conductive and Flexible Paper of 1D Silver-Nanowire-Doped Graphene. ACS Applied Materials & Interfaces, 5, 1408−1413.
  • Compton, O.C. ve Nguyen, S.T., 2010. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small, 6, 711–723.
  • Dağcı Kıranşan, K., Aksoy, M. ve Topçu, E., 2018. Flexible and freestanding catalase-Fe3O4/reduced graphene oxide paper: Enzymatic hydrogen peroxide sensor applications. Materials Research Bulletin, 106, 57–65.
  • Dağcı Kıranşan, K. ve Topçu, E., 2018. Free-standing and Flexible MoS2/rGO Paper Electrode for Amperometric Detection of Folic Acid. Electroanalysis, 30, 810–818.
  • Dağcı Kıranşan, K., Topçu, E. ve Alanyalıoğlu, M., 2017. Surface-confined electropolymerization of pyronin Y in the graphene composite paper structure for the amperometric determination of dopamine. Journal of Applied Polymer Science, 134, 45139.
  • Dağcı, K. ve Alanyalıoğlu M., 2016. Preparation of Free-Standing and Flexible Graphene/AgNanoparticles/Poly(pyronin Y) Hybrid Paper Electrode forAmperometric Determination of Nitrite. ACS Applied Materials & Interfaces, 8, 2713−2722.
  • De Benedetto., G., Fico., D., Pennetta., A., Malitesta, C., Nicolardi, G., Lofrumento, D.D., De Nuccio, F. ve Pesa, L.V. 2014. A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, andserotonin in mouse brain homogenate by HPLC with fluorimetric detection. Journal of Pharmaceutical and Biomedical Analysis, 98, 266–270.
  • Demuru, S., Nela, L., Marchack, N., Holmes, S.J., Farmer, D.B. Tulevski, G.S., Lin, Q. ve Deligianni, H. 2018. Scalable Nanostructured Carbon Electrode Arrays for Enhanced Dopamine Detection. ACS Sensors, 3, 799−805.
  • Ding, K.Q., 2009. Cyclic Voltammetrically-prepared MnO2 Coated on an ITO Glass Substrate. Journal of the Chinese Chemical Society, 56, 175-181.
  • El-Dien, F.A.N., Zayed, M.A., Mohamed, G.G. ve El-Nahas, R.G., 2005. Two Spectrophotometric Assays for Dopamine Derivatives in Pharmaceutical Products and in Biological Samples of Schizophrenic Patients Using Copper Tetramine Complex and Triiodide Reagent. Journal of Biomedicine and Biotechnology, 1, 1–9.
  • Feng, X., Zhang, Y., Song, J., Chen, N., Zhou, J., Huang, Z., Ma,Y., Zhang, L. ve Wang, L., 2015a. MnO2/Graphene Nanocomposites for Nonenzymatic Electrochemical Detection of Hydrogen Peroxide. Electroanalysis, 27, 353–359.
  • Feng, X., Zhang, Y., Zhou, J., Li, Y., Chen, S., Zhang, L., Ma, Y., Wang, L. ve Yan, X., 2015b. Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale, 7, 2427-2432.
  • Gao, F., Cai, X., Wang, X., Gao, C., Liu, S., Gao, F. ve Wang, Q., 2013. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors and Actuators B: Chemical, 186, 380–387.
  • Grieshaber, D., MacKenzie, R., Vörös, J. ve Reimhult, E., 2008. Electrochemical Biosensors-Sensor Principles and Architectures. Sensors, 8, 1400-1458.
  • Hummers, W. ve Offeman, R.E. J. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339-1339.
  • Kailasa, S.K. ve Wu, H.F., 2013. Recent Advances in Mass Spectrometry for the Identification of Neurochemicals and their Metabolites in Biofluids. Current Neuropharmacology, 11, 436-464.
  • Kannan, P.K., Moshkalev, S.A. ve Rout, C. S., 2016. Highly sensitive and selective electrochemical dopamine sensing properties of multilayer graphene nanobeltsNanotechnology, 27, 075504.
  • Kriks, S., Shim, J.W., Piao, J., Ganat, Y.M., Wakeman, D.R., Xie, Z., Carrilo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., Yang, L., Beal, M.F., Surmeier, D.J., Kordower, J.H., Tabar, V. ve Studer, L., 2011. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480, 547-551.
  • Lan, Y., Yuan, F., Fereja, T.H., Wang, C., Lou, B., Li, J. ve Xu G., 2019. Chemiluminescence of Lucigenin/Riboflavin and Its Application for Selective and Sensitive Dopamine Detection. Analytical Chemistry, 91, 2135−2139.
  • Li, B.R., Hsieh, Y.J., Chen, Y.X., Chung, Y.T., Pan, C.Y. ve Chen, T.S., 2013. An Ultrasensitive Nanowire-Transistor Biosensor for Detecting Dopamine Release from Living PC12 Cells under Hypoxic Stimulation. Journal of the American Chemical Society, 135, 16034-16037.
  • Li, W., Xu, K., Li, B., Sun, J., Jiang, F., Yu, Z., Zou, R., Chen, Z. ve Hu, J., 2014. MnO2 Nanoflower Arrays with High Rate Capability for Flexible Supercapacitors. ChemElectroChem, 1, 1003–1007.
  • Liang, J., Zhao, Y., Guo. L. ve Li, L., 2012. Flexible Free-Standing Graphene/SnO2 Nanocomposites Paper for Li-Ion Battery. ACS Applied Materials and Interfaces, 4, 5742−5748.
  • Liu, F., Deng, Y., Han, X., Hu, W. ve Zhong, C., 2016. Electrodeposition of metals and alloys from ionic liquids. Journal of Alloys and Compounds, 654,163-170.
  • Liu, M., He, S. ve Chen, W., 2014. Co3O4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H2O2 detection. Nanoscale, 6, 11769-11776.
  • Liu, W., Ge, H. ve Gu, Z., 2018. Electrochemical Deposition Tailors the Catalytic Performance of MnO2-Based Micromotors. Small, 14, 1802771.
  • Liu, Y.L., Liu, R., Qin, Y., Qiu, Q. F., Chen, Z., Cheng, S.B. ve Huang, W.H., 2018. Flexible Electrochemical Urea Sensor Based on Surface Molecularly Imprinted Nanotubes for Detection of Human Sweat, Analytical Chemistry, 90, 13081-13087.
  • Manivel, A., Ilayaraja, N., Velayutham, D. ve Noel, M., 2007. Medium effects on the electro-deposition of MnO2 on glassy carbon electrode: A comparative study in alkane, perfluoro alkane carboxylic acids and methanesulphonic acid. Electrochimica Acta, 52, 7841–7848.
  • Meng, X., Lu, L. ve Sun, C., 2018. Green Synthesis of Three-Dimensional MnO2/Graphene Hydrogel Composites as a High-Performance Electrode Material for Supercapacitors. ACS Applied Materials. and Interfaces, 10, 16474−16481.
  • Sheng, Q., Qiao, X. ve Zheng, J., 2018. The Hybrid of Gold Nanoparticles and 3D Flower-like MnO2 Nanostructure with Enhanced Activity for Detection of Hydrogen Peroxide. Electroanalysis, 30, 137–145.
  • Sheng, Z.H., Zheng, X.Q., Xu, J.Y., Bao, W.J., Wang, F.B. ve Xia, X.H., 2012. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors and Bioelectronics, 34, 125–131.
  • Topçu, E., Dağcı Kıranşan, K., 2018. Flexible and Free-standing PtNLs-MoS2/Reduced Graphene Oxide Composite Paper: A High-Performance Rolled Paper Catalyst for Hydrogen Evolution Reaction. ChemistrySelect, 3, 5941–5949.
  • Topçu, E., Dağcı, K. ve Alanyalıoğlu, M., 2016. Free-standing Graphene/Poly(methylene blue)/AgNPs Composite Paper for Electrochemical Sensing of NADH. Electroanalysis, 28, 1–13.
  • Volkow, N.D., Wise R.A. ve Baler, R., 2017. The dopamine motive system: implications for drug and food addiction. Nature Reviews Neuroscience, 18, 741-752.
  • Wang, H. ve He, Y., 2017. Recent Advances in Silicon Nanomaterial-Based Fluorescent Sensors. Sensors, 17, 268.
  • Wang, Y.C., Cokeliler, D. ve Gunasekaran, S., 2015. Reduced Graphene Oxide/Carbon Nanotube/Gold Nanoparticles Nanocomposite Functionalized Screen-Printed Electrode for Sensitive Electrochemical Detection of Endocrine Disruptor Bisphenol A. Electroanalysis, 27, 2527–2536.
  • Wen, D., Liu, W., Herrmann, A.K., Haubold, D., Holzschuh, M., Simon, F. ve Eychmüller, A., 2016. Simple and Sensitive Colorimetric Detection of Dopamine Based on Assembly of Cyclodextrin-Modified Au Nanoparticles. Small, 12, 2439–2442.
  • Wiench, P., González, Z., Menéndez, R., Grzyb, B. ve Gryglewicz, G., 2018. Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides. Sensors and Actuators B: Chemical, 257, 143–153.
  • Xiao, F., Li, Y., Zan, X., Liao, K., Xu, R. ve Duan, H., 2012a. Growth of Metal–Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors. Adv. Funct. Mater., 22, 2487–2494.
  • Xiao, F., Song J., Gao, H. Zan, X., Xu, R. ve Duan, H., 2012b. Coating Graphene Paper with 2D-Assembly of Electrocatalytic Nanoparticles: A Modular Approach toward High-Performance Flexible Electrodes. ACS Nano, 6, 100–110.
  • Yang, L., Liu, D., Huang, J. ve You, T., 2014. Simultaneous determination of dopamine, ascorbic acid and uric acidat electrochemically reduced graphene oxide modified electrode. Sensors and Actuators B:Chemical, 193, 166–172.
  • Yuan, Q., Liu, Y., Ye, C., Sun, H., Dai, D., Wei, Q., Lai, G., Wu, T., Yu, A., Fu,. L., Chee, K. W.A. ve Lin, C.T., 2018. Highly stable and regenerative graphene–diamond hybrid electrochemicalbiosensor for fouling target dopamine detection. Biosensors and Bioelectronics, 111, 117–123.
  • Zhang, K., Liu, Y., Wang, Y., Zhang, R. Liu, J. Wei, J., Qian, H., Qian, K., Chen, R. ve Liu B., 2018. Quantitative SERS Detection of Dopamine in Cerebrospinal Fluid by Dual-Recognition-Induced Hot Spot Generation. ACS Applied Materials and Interfaces, 10, 15388−15394.
  • Zhang, M., Halder, A., Hou, C., Ulstrup, J. ve Chi, Q., 2016. Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors. Bioelectrochemistry, 109, 87–94.

Serbest Duran ve Esnek MnO2/Grafen Kağıt Elektrot: Dopamin Tayini İçin Yeni Tip Amperometrik Sensör

Year 2020, , 22 - 34, 15.01.2020
https://doi.org/10.17714/gumusfenbil.562555

Abstract

Bu
çalışmada, serbest duran, yüksek esneklik ve dayanıklılık özelliğine sahip, yüzeyi
MnO2 kaplı indirgenmiş grafen oksit (MnO2/rGO) kağıt
hazırlanmıştır. Elde edilen MnO2/rGO kağıt, taramalı elektron
mikroskobu-enerji dağılımlı X-ışını spektroskopisi (SEM-EDS), X-ışını kırınım
spektroskopisi (XRD), X-ışını foto elektron spektroskopisi (XPS) ve Raman
spektroskopisi gibi teknikler ile karakterize edilmiştir. Dopaminin (DA)
elektrokimyasal davranışı, esnek MnO2/rGO kağıt üzerinde, dönüşümlü
voltametri ve amperometri metotları ile incelenmiştir. Elektrokimyasal sonuçlar,
esnek MnO2/rGO kağıt elektrotun yüksek spesifik yüzey alanına sahip
olmasından dolayı, DA'ya karşı mükemmel elektrokatalitik aktivite sergilediğini
göstermiştir. Ayrıca, elde edilen esnek elektrokimyasal sensör, DA'nın amperometrik
tayininde; geniş bir doğrusal aralık, düşük tayin sınırı ve oldukça hassas tepki
göstermiştir.

References

  • Bromberg-Martin, E.S., Matsumoto, M. ve Hikosaka, O., 2010. Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. Neuron, 68, 815-834.
  • Cançado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.VO., Lombardo, A., Kulmala, T.S. ve Ferrari, A.C., 2011. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett., 11, 3190.
  • Chen, J., Bi, H., Sun, S., Tang, Y., Zhao, W., Lin, T., Wan, D., Huang, F., Zhou, X., Xie, X. ve Jiang, M., 2013. Highly Conductive and Flexible Paper of 1D Silver-Nanowire-Doped Graphene. ACS Applied Materials & Interfaces, 5, 1408−1413.
  • Compton, O.C. ve Nguyen, S.T., 2010. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small, 6, 711–723.
  • Dağcı Kıranşan, K., Aksoy, M. ve Topçu, E., 2018. Flexible and freestanding catalase-Fe3O4/reduced graphene oxide paper: Enzymatic hydrogen peroxide sensor applications. Materials Research Bulletin, 106, 57–65.
  • Dağcı Kıranşan, K. ve Topçu, E., 2018. Free-standing and Flexible MoS2/rGO Paper Electrode for Amperometric Detection of Folic Acid. Electroanalysis, 30, 810–818.
  • Dağcı Kıranşan, K., Topçu, E. ve Alanyalıoğlu, M., 2017. Surface-confined electropolymerization of pyronin Y in the graphene composite paper structure for the amperometric determination of dopamine. Journal of Applied Polymer Science, 134, 45139.
  • Dağcı, K. ve Alanyalıoğlu M., 2016. Preparation of Free-Standing and Flexible Graphene/AgNanoparticles/Poly(pyronin Y) Hybrid Paper Electrode forAmperometric Determination of Nitrite. ACS Applied Materials & Interfaces, 8, 2713−2722.
  • De Benedetto., G., Fico., D., Pennetta., A., Malitesta, C., Nicolardi, G., Lofrumento, D.D., De Nuccio, F. ve Pesa, L.V. 2014. A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, andserotonin in mouse brain homogenate by HPLC with fluorimetric detection. Journal of Pharmaceutical and Biomedical Analysis, 98, 266–270.
  • Demuru, S., Nela, L., Marchack, N., Holmes, S.J., Farmer, D.B. Tulevski, G.S., Lin, Q. ve Deligianni, H. 2018. Scalable Nanostructured Carbon Electrode Arrays for Enhanced Dopamine Detection. ACS Sensors, 3, 799−805.
  • Ding, K.Q., 2009. Cyclic Voltammetrically-prepared MnO2 Coated on an ITO Glass Substrate. Journal of the Chinese Chemical Society, 56, 175-181.
  • El-Dien, F.A.N., Zayed, M.A., Mohamed, G.G. ve El-Nahas, R.G., 2005. Two Spectrophotometric Assays for Dopamine Derivatives in Pharmaceutical Products and in Biological Samples of Schizophrenic Patients Using Copper Tetramine Complex and Triiodide Reagent. Journal of Biomedicine and Biotechnology, 1, 1–9.
  • Feng, X., Zhang, Y., Song, J., Chen, N., Zhou, J., Huang, Z., Ma,Y., Zhang, L. ve Wang, L., 2015a. MnO2/Graphene Nanocomposites for Nonenzymatic Electrochemical Detection of Hydrogen Peroxide. Electroanalysis, 27, 353–359.
  • Feng, X., Zhang, Y., Zhou, J., Li, Y., Chen, S., Zhang, L., Ma, Y., Wang, L. ve Yan, X., 2015b. Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale, 7, 2427-2432.
  • Gao, F., Cai, X., Wang, X., Gao, C., Liu, S., Gao, F. ve Wang, Q., 2013. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors and Actuators B: Chemical, 186, 380–387.
  • Grieshaber, D., MacKenzie, R., Vörös, J. ve Reimhult, E., 2008. Electrochemical Biosensors-Sensor Principles and Architectures. Sensors, 8, 1400-1458.
  • Hummers, W. ve Offeman, R.E. J. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339-1339.
  • Kailasa, S.K. ve Wu, H.F., 2013. Recent Advances in Mass Spectrometry for the Identification of Neurochemicals and their Metabolites in Biofluids. Current Neuropharmacology, 11, 436-464.
  • Kannan, P.K., Moshkalev, S.A. ve Rout, C. S., 2016. Highly sensitive and selective electrochemical dopamine sensing properties of multilayer graphene nanobeltsNanotechnology, 27, 075504.
  • Kriks, S., Shim, J.W., Piao, J., Ganat, Y.M., Wakeman, D.R., Xie, Z., Carrilo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., Yang, L., Beal, M.F., Surmeier, D.J., Kordower, J.H., Tabar, V. ve Studer, L., 2011. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480, 547-551.
  • Lan, Y., Yuan, F., Fereja, T.H., Wang, C., Lou, B., Li, J. ve Xu G., 2019. Chemiluminescence of Lucigenin/Riboflavin and Its Application for Selective and Sensitive Dopamine Detection. Analytical Chemistry, 91, 2135−2139.
  • Li, B.R., Hsieh, Y.J., Chen, Y.X., Chung, Y.T., Pan, C.Y. ve Chen, T.S., 2013. An Ultrasensitive Nanowire-Transistor Biosensor for Detecting Dopamine Release from Living PC12 Cells under Hypoxic Stimulation. Journal of the American Chemical Society, 135, 16034-16037.
  • Li, W., Xu, K., Li, B., Sun, J., Jiang, F., Yu, Z., Zou, R., Chen, Z. ve Hu, J., 2014. MnO2 Nanoflower Arrays with High Rate Capability for Flexible Supercapacitors. ChemElectroChem, 1, 1003–1007.
  • Liang, J., Zhao, Y., Guo. L. ve Li, L., 2012. Flexible Free-Standing Graphene/SnO2 Nanocomposites Paper for Li-Ion Battery. ACS Applied Materials and Interfaces, 4, 5742−5748.
  • Liu, F., Deng, Y., Han, X., Hu, W. ve Zhong, C., 2016. Electrodeposition of metals and alloys from ionic liquids. Journal of Alloys and Compounds, 654,163-170.
  • Liu, M., He, S. ve Chen, W., 2014. Co3O4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H2O2 detection. Nanoscale, 6, 11769-11776.
  • Liu, W., Ge, H. ve Gu, Z., 2018. Electrochemical Deposition Tailors the Catalytic Performance of MnO2-Based Micromotors. Small, 14, 1802771.
  • Liu, Y.L., Liu, R., Qin, Y., Qiu, Q. F., Chen, Z., Cheng, S.B. ve Huang, W.H., 2018. Flexible Electrochemical Urea Sensor Based on Surface Molecularly Imprinted Nanotubes for Detection of Human Sweat, Analytical Chemistry, 90, 13081-13087.
  • Manivel, A., Ilayaraja, N., Velayutham, D. ve Noel, M., 2007. Medium effects on the electro-deposition of MnO2 on glassy carbon electrode: A comparative study in alkane, perfluoro alkane carboxylic acids and methanesulphonic acid. Electrochimica Acta, 52, 7841–7848.
  • Meng, X., Lu, L. ve Sun, C., 2018. Green Synthesis of Three-Dimensional MnO2/Graphene Hydrogel Composites as a High-Performance Electrode Material for Supercapacitors. ACS Applied Materials. and Interfaces, 10, 16474−16481.
  • Sheng, Q., Qiao, X. ve Zheng, J., 2018. The Hybrid of Gold Nanoparticles and 3D Flower-like MnO2 Nanostructure with Enhanced Activity for Detection of Hydrogen Peroxide. Electroanalysis, 30, 137–145.
  • Sheng, Z.H., Zheng, X.Q., Xu, J.Y., Bao, W.J., Wang, F.B. ve Xia, X.H., 2012. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors and Bioelectronics, 34, 125–131.
  • Topçu, E., Dağcı Kıranşan, K., 2018. Flexible and Free-standing PtNLs-MoS2/Reduced Graphene Oxide Composite Paper: A High-Performance Rolled Paper Catalyst for Hydrogen Evolution Reaction. ChemistrySelect, 3, 5941–5949.
  • Topçu, E., Dağcı, K. ve Alanyalıoğlu, M., 2016. Free-standing Graphene/Poly(methylene blue)/AgNPs Composite Paper for Electrochemical Sensing of NADH. Electroanalysis, 28, 1–13.
  • Volkow, N.D., Wise R.A. ve Baler, R., 2017. The dopamine motive system: implications for drug and food addiction. Nature Reviews Neuroscience, 18, 741-752.
  • Wang, H. ve He, Y., 2017. Recent Advances in Silicon Nanomaterial-Based Fluorescent Sensors. Sensors, 17, 268.
  • Wang, Y.C., Cokeliler, D. ve Gunasekaran, S., 2015. Reduced Graphene Oxide/Carbon Nanotube/Gold Nanoparticles Nanocomposite Functionalized Screen-Printed Electrode for Sensitive Electrochemical Detection of Endocrine Disruptor Bisphenol A. Electroanalysis, 27, 2527–2536.
  • Wen, D., Liu, W., Herrmann, A.K., Haubold, D., Holzschuh, M., Simon, F. ve Eychmüller, A., 2016. Simple and Sensitive Colorimetric Detection of Dopamine Based on Assembly of Cyclodextrin-Modified Au Nanoparticles. Small, 12, 2439–2442.
  • Wiench, P., González, Z., Menéndez, R., Grzyb, B. ve Gryglewicz, G., 2018. Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides. Sensors and Actuators B: Chemical, 257, 143–153.
  • Xiao, F., Li, Y., Zan, X., Liao, K., Xu, R. ve Duan, H., 2012a. Growth of Metal–Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors. Adv. Funct. Mater., 22, 2487–2494.
  • Xiao, F., Song J., Gao, H. Zan, X., Xu, R. ve Duan, H., 2012b. Coating Graphene Paper with 2D-Assembly of Electrocatalytic Nanoparticles: A Modular Approach toward High-Performance Flexible Electrodes. ACS Nano, 6, 100–110.
  • Yang, L., Liu, D., Huang, J. ve You, T., 2014. Simultaneous determination of dopamine, ascorbic acid and uric acidat electrochemically reduced graphene oxide modified electrode. Sensors and Actuators B:Chemical, 193, 166–172.
  • Yuan, Q., Liu, Y., Ye, C., Sun, H., Dai, D., Wei, Q., Lai, G., Wu, T., Yu, A., Fu,. L., Chee, K. W.A. ve Lin, C.T., 2018. Highly stable and regenerative graphene–diamond hybrid electrochemicalbiosensor for fouling target dopamine detection. Biosensors and Bioelectronics, 111, 117–123.
  • Zhang, K., Liu, Y., Wang, Y., Zhang, R. Liu, J. Wei, J., Qian, H., Qian, K., Chen, R. ve Liu B., 2018. Quantitative SERS Detection of Dopamine in Cerebrospinal Fluid by Dual-Recognition-Induced Hot Spot Generation. ACS Applied Materials and Interfaces, 10, 15388−15394.
  • Zhang, M., Halder, A., Hou, C., Ulstrup, J. ve Chi, Q., 2016. Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors. Bioelectrochemistry, 109, 87–94.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ezgi Topçu 0000-0003-1506-9089

Publication Date January 15, 2020
Submission Date May 9, 2019
Acceptance Date September 30, 2019
Published in Issue Year 2020

Cite

APA Topçu, E. (2020). Serbest Duran ve Esnek MnO2/Grafen Kağıt Elektrot: Dopamin Tayini İçin Yeni Tip Amperometrik Sensör. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(1), 22-34. https://doi.org/10.17714/gumusfenbil.562555