Research Article
BibTex RIS Cite

Synthesis and structural characterization of novel pyrazoline derivatives

Year 2021, , 622 - 628, 15.04.2021
https://doi.org/10.17714/gumusfenbil.830149

Abstract

Pyrazolines, which are nitrogen including five-membered heterocyclic structures, have been used in the organic and pharmaceutical industries. This study aimed was to synthesize and characterizes new series of 3,5-diphenyl-4,5-dihydro-1H-pyrazole derivatives. The new pyrazoline compounds have been synthesized from chalcones and hydrazine hydrate in two steps. In the first step, chalcones were synthesized from 2-amino acetophenone and various substituted benzaldehyde by Claisen-Schmidt condensation at room temperature. In second step, starting from various substituted chalcones derivatives with hydrazine hydrate and glacial acetic acid in anhydrous ethanol were synthesized six novel 3,5-diphenyl-4,5-dihydro-1H-pyrazole derivatives utilizing intramolecular Michael addition reaction in good yields. The structures of the newly synthesized 3,5-diphenyl-4,5-dihydro-1H-pyrazole derivatives are identified via 1H NMR, 13C NMR, FT-IR, and HRMS.

References

  • Abdel-Halim, M., Tinsley, H., keeton, A. B., Weam, M., Atta, N. H., Hammam, M. A., Hefnawy, A., Hartmann, R. W., Engel, M., Piazza, G. A. and Abadi, A. H. (2020). Discovery of trisubstituted pyrazolines as a novel scaffold for the development of selective phosphodiesterase 5 inhibitors. Bioorganic Chemistry, 104, 104322, https://doi.org/10.1016/j.bioorg.2020.104322.
  • Ahmad, A., Husain, A., Khan, S. A., Mujeeb, M. and Bhandari, A. (2016). Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. Journal of Saudi Chemical Society, 20(5), 577-584, https://doi.org/10.1016/j.jscs.2014.12.004.
  • Arslan, T., Çelik, G., Çelik, H., Şentürk, M., Yaylı, N. and Ekinci, D. (2016). Synthesis and Biological Evaluation of Novel Bischalcone Derivatives as Carbonic Anhydrase Inhibitors. Archiv der Pharmazie, 349(9), 741-748, https://doi.org/10.1002/ardp.201600122.
  • Bano, S., Alam, M. S., Javed, K., Dudeja, M., Das, A. K. and Dhulap, A. (2015). Synthesis, biological evaluation and molecular docking of some substituted pyrazolines and isoxazolines as potential antimicrobial agents. European Journal of Medicinal Chemistry, 95, 96-103, https://doi.org/10.1016/j.ejmech.2015.03.031.
  • Çelik, G., Arslan, T., Şentürk, M. and Ekinci, D. (2020). Synthesis and characterization of some new pyrazolines and their inhibitory potencies against carbonic anhydrases. Archiv der Pharmazie, 353(3), 1900292, https://doi.org/10.1002/ardp.201900292.
  • Çelik, G. (2020). New chalcone-3-O-glycoside derivatives: Synthesis and characterization. Journal of Chemical Research, 44(9-10), 598-601, https://doi.org/10.1177/1747519820915165.
  • Delgado, G. E., Liew, S. M., Jamalis, J., Cisterna, J., Cardenas, A. and Brito, I. (2020). Structural characterization and Hirsfeld surface analysis of the pyrazoline 1-(3-(4-iodophenyl)-5-(3-methylthiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl) ethan-1-one. Journal of Molecular Structure, https://doi.org/10.1016/j.molstruc.2020.128044.
  • Dofe, V. S., Sarkate, A. P., Tiwari, S. V., Lokwani, D. K., Karnik, K. S., Kale, I. A., Dodamani, S., Jalalpure, S. S. and Burra, P. V. L. S. (2020). Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization. Bioorganic & Medicinal Chemistry Letters, 30(22), 127592, https://doi.org/10.1016/j.bmcl.2020.127592.
  • El Sayed Aly, M. R., El Razek Fodah, H. H .A. and Saleh, S. Y. (2014). Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes. European Journal of Medicinal Chemistry, 76, 517-530, https://doi.org/10.1016/j.ejmech.2014.02.021.
  • Farooq, S. and Ngaini, Z. (2020). One-Pot and Two-Pot Synthesis of Chalcone Based Mono and Bis-Pyrazolines. Tetrahedron Letters, 61(4), 151416, https://doi.org/10.1016/j.tetlet.2019.151416.
  • Hassan, S. Y. (2013). Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules, 18(3), 2683-2711, https://doi.org/10.3390/molecules18032683.
  • Jainey, P. J. and Bhat, I. K. (2012). Antitumor, analgesic, and anti-inflammatory activities of synthesized pyrazolines. Journal of Young Pharmacists, 4(2), 82-87, https://doi.org/10.4103/0975-1483.96621.
  • Kahriman, N., Haşimoğlu, Z., Serdaroğlu, V., Beriş, F. Ş., Barut B. and Yaylı, N. (2017). Synthesis of Novel Pyrazolines, Their Boron-Fluorine Complexes, and Investigation of Antibacterial, Antioxidant, and Enzyme Inhibition Activities. Archiv der Pharmazie, 350(2), e1600285, https://doi.org/10.1002/ardp.201600285.
  • Karthikeyan, M. S., Holla, B. S. and Kumari, N. S. (2007). Synthesis and antimicrobial studies on novel chloro-fluorine containing hydroxy pyrazolines. European Journal of Medicinal Chemistry, 42(1), 30-36, https://doi.org/10.1016/j.ejmech.2006.07.011.
  • Li, Y., Wan, J. P. and Wen, C. (2017). Water-acetic acid mediated chemoselective synthesis of pyrazolines via multimolecular domino reactions of enaminones and sulfonyl hydrazines. Tetrahedron, 73(16), 2323-2328, https://doi.org/10.1016/j.tet.2017.03.019.
  • Lone, I. H., Khan, K. Z. and Fozdar, B. I. (2014). Synthesis, physicochemical properties, antimicrobial and antioxidant studies of pyrazoline derivatives bearing a pyridyl moiety. Medicinal Chemistry Research, 23(1), 363-369, https://doi.org/10.1007/s00044-013-0643-z.
  • Michelini, L. J., Castro, M. R. C., Custodio, J. M. F., Naves, L. F. N., Vaz, W. F., Lobon, G. S., Martins, F. T., Perez, C. N. and Napolitano, H. B. (2018). A novel potencial anticancer chalcone: Synthesis, crystal structure and cytotoxic assay. Journal of Molecular Structure, 1168, 309-315, https://doi.org/10.1016/j.molstruc.2018.05.010.
  • Mishra, V. K., Mishra, M., Kashaw, V. and Kashaw, S. K. (2017). Synthesis of 1,3,5-trisubstituted pyrazolines asantimalarial and antimicrobial agents. Bioorganic & Medicinal Chemistry, 25(6), 1949-1962, https://doi.org/10.1016/j.bmc.2017.02.025.
  • Patel, N. B., Shaikh, F. M., Patel, H. R. and Rajani, D. (2016). Synthesis of 2-pyrazoline from pyridine based chalcone by conventional and microwave techniques: Their comparison and antimicrobial studies. Journal of Saudi Chemical Society, 20, 451-S456, https://doi.org/10.1016/j.jscs.2013.01.008.
  • Raghav, N., Garg, S. and Ravish, I. (2016). Conversion of 2'-substituted chalcones in the presence of BSA as evidenced by 1H NMR studies. International Journal of Biological Macromelecules, 85, 23-28, https://doi.org/10.1016/j.ijbiomac.2015.12.060.
  • Rana, M., Arif, R., Khan, F. I., Maurya, V., Singh, R., Faizan, M. I., Yasmeen, S., Dar, S. H., Alam, R., Sahu, A. and Ahmad, T. (2021). Pyrazoline analogs as potential anticancer agents and their apoptosis, molecular docking, MD simulation, DNA binding and antioxidant studies. Bioorganic Chemistry, 108, 104665, https://doi.org/10.1016/j.bioorg.2021.104665.
  • Sever, B., Altıntop, M. D., Radwan, M. O., Özdemir, A., Otsuka, M., Fujita, M. and Ciftci, H. I. (2019). Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors. European Journal of Medicinal Chemistry, 182, 111648, https://doi.org/10.1016/j.ejmech.2019.111648.
  • Sever, B., Türkeş, C., Altıntop, M. D., Demir, Y. and Beydemir, Ş. (2020). Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. International Journal of Biological Macromolecules, 163, 1970-1988, https://doi.org/10.1016/j.ijbiomac.2020.09.043.
  • Solanki, N. S., Yaduvanshi, K. S., Jain, V., Mishra, A. and Marothia, D. (2012). Synthesis of antimicrobial activities of di (substituted phenyl)-2 pyrazoline derivatives. International Journal of PharmTech Research, 4(4), 1464-1470.
  • Stefans, N. M., Toigo, J., Maioral, M. F., Jacques, A. V., Chiaradia-Delatorre, L. D., Perondi, D. M., Ribeiro, A. A. B., Bigolin, A., Pirath, I. M. S., Duarte, B. F., Nunes, R. J. and Santos-Silva, M. C. (2019). Synthesis of novel pyrazoline derivatives and the evaluation of death mechanisms involved in their antileukemic activity.Bioorganic & Medicinal Chemistry, 27(2), 375-382, https://doi.org/10.1016/j.bmc.2018.12.012.
  • Sun, H., Wang, X., Zhan, M., Liu, J. and Xie, Y. (2013). Facile synthesis of novel tetrasubstituted 1-pyrazolines from Baylis-Hillman adducts and acyl diazomethanes. Tetrahedron Letters, 54(29), 3846-3850, https://doi.org/10.1016/j.tetlet.2013.05.041.
  • Yar, M. S., Bakht, M. A., Siddiqui, A. A., Abdullah, M. M. and Clercq, E. D. (2009). Synthesis and evaluation of in vitro antiviral activity of novel phenoxy acetic acid derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 24, 876-882, https://doi.org/10.1080/14756360802447917.

Yeni pirazolin türevlerinin sentezi ve yapı karakterizasyonu

Year 2021, , 622 - 628, 15.04.2021
https://doi.org/10.17714/gumusfenbil.830149

Abstract

Heterosiklik moleküllerin azot içeren 5 halkalı üyesi olan pirazolinler organik ve eczacılık endüstrisinde kullanılırlar. Bu çalışmanın amacı, yeni 3,5-difenil-4,5-dihidro-1H-pirazol türevlerini sentezlemek ve karakterize etmektir. Yeni pirazolin türevleri kalkon ve hidrazin hidrattan iki adımda sentezlendi.İlk adımda, 2-amino asetofenon ve çeşitli substitue benzaldehitlerden oda sıcaklığında Claisen-Schmidt kondenzasyonuyla kalkonlar sentezlendi. İkinci adımda, farklı substitue kalkon türevlerinden başlanarak susuz etanol içinde hidrazin hidrat ile birlikte 6 adet yeni 3,5-difenil-4,5-dihidro-1H-pirazol türevleri molekül içi Michael katılması reaksiyonu kullanılarak iyi verimle sentezlendi. Sentezlenen tüm yeni 3,5-difenil-4,5-dihidro-1H-pirazol türevlerinin yapıları 1H NMR, 13C NMR, FT-IR ve HRMS yardımıyla aydınlatıldı.

References

  • Abdel-Halim, M., Tinsley, H., keeton, A. B., Weam, M., Atta, N. H., Hammam, M. A., Hefnawy, A., Hartmann, R. W., Engel, M., Piazza, G. A. and Abadi, A. H. (2020). Discovery of trisubstituted pyrazolines as a novel scaffold for the development of selective phosphodiesterase 5 inhibitors. Bioorganic Chemistry, 104, 104322, https://doi.org/10.1016/j.bioorg.2020.104322.
  • Ahmad, A., Husain, A., Khan, S. A., Mujeeb, M. and Bhandari, A. (2016). Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. Journal of Saudi Chemical Society, 20(5), 577-584, https://doi.org/10.1016/j.jscs.2014.12.004.
  • Arslan, T., Çelik, G., Çelik, H., Şentürk, M., Yaylı, N. and Ekinci, D. (2016). Synthesis and Biological Evaluation of Novel Bischalcone Derivatives as Carbonic Anhydrase Inhibitors. Archiv der Pharmazie, 349(9), 741-748, https://doi.org/10.1002/ardp.201600122.
  • Bano, S., Alam, M. S., Javed, K., Dudeja, M., Das, A. K. and Dhulap, A. (2015). Synthesis, biological evaluation and molecular docking of some substituted pyrazolines and isoxazolines as potential antimicrobial agents. European Journal of Medicinal Chemistry, 95, 96-103, https://doi.org/10.1016/j.ejmech.2015.03.031.
  • Çelik, G., Arslan, T., Şentürk, M. and Ekinci, D. (2020). Synthesis and characterization of some new pyrazolines and their inhibitory potencies against carbonic anhydrases. Archiv der Pharmazie, 353(3), 1900292, https://doi.org/10.1002/ardp.201900292.
  • Çelik, G. (2020). New chalcone-3-O-glycoside derivatives: Synthesis and characterization. Journal of Chemical Research, 44(9-10), 598-601, https://doi.org/10.1177/1747519820915165.
  • Delgado, G. E., Liew, S. M., Jamalis, J., Cisterna, J., Cardenas, A. and Brito, I. (2020). Structural characterization and Hirsfeld surface analysis of the pyrazoline 1-(3-(4-iodophenyl)-5-(3-methylthiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl) ethan-1-one. Journal of Molecular Structure, https://doi.org/10.1016/j.molstruc.2020.128044.
  • Dofe, V. S., Sarkate, A. P., Tiwari, S. V., Lokwani, D. K., Karnik, K. S., Kale, I. A., Dodamani, S., Jalalpure, S. S. and Burra, P. V. L. S. (2020). Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization. Bioorganic & Medicinal Chemistry Letters, 30(22), 127592, https://doi.org/10.1016/j.bmcl.2020.127592.
  • El Sayed Aly, M. R., El Razek Fodah, H. H .A. and Saleh, S. Y. (2014). Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes. European Journal of Medicinal Chemistry, 76, 517-530, https://doi.org/10.1016/j.ejmech.2014.02.021.
  • Farooq, S. and Ngaini, Z. (2020). One-Pot and Two-Pot Synthesis of Chalcone Based Mono and Bis-Pyrazolines. Tetrahedron Letters, 61(4), 151416, https://doi.org/10.1016/j.tetlet.2019.151416.
  • Hassan, S. Y. (2013). Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules, 18(3), 2683-2711, https://doi.org/10.3390/molecules18032683.
  • Jainey, P. J. and Bhat, I. K. (2012). Antitumor, analgesic, and anti-inflammatory activities of synthesized pyrazolines. Journal of Young Pharmacists, 4(2), 82-87, https://doi.org/10.4103/0975-1483.96621.
  • Kahriman, N., Haşimoğlu, Z., Serdaroğlu, V., Beriş, F. Ş., Barut B. and Yaylı, N. (2017). Synthesis of Novel Pyrazolines, Their Boron-Fluorine Complexes, and Investigation of Antibacterial, Antioxidant, and Enzyme Inhibition Activities. Archiv der Pharmazie, 350(2), e1600285, https://doi.org/10.1002/ardp.201600285.
  • Karthikeyan, M. S., Holla, B. S. and Kumari, N. S. (2007). Synthesis and antimicrobial studies on novel chloro-fluorine containing hydroxy pyrazolines. European Journal of Medicinal Chemistry, 42(1), 30-36, https://doi.org/10.1016/j.ejmech.2006.07.011.
  • Li, Y., Wan, J. P. and Wen, C. (2017). Water-acetic acid mediated chemoselective synthesis of pyrazolines via multimolecular domino reactions of enaminones and sulfonyl hydrazines. Tetrahedron, 73(16), 2323-2328, https://doi.org/10.1016/j.tet.2017.03.019.
  • Lone, I. H., Khan, K. Z. and Fozdar, B. I. (2014). Synthesis, physicochemical properties, antimicrobial and antioxidant studies of pyrazoline derivatives bearing a pyridyl moiety. Medicinal Chemistry Research, 23(1), 363-369, https://doi.org/10.1007/s00044-013-0643-z.
  • Michelini, L. J., Castro, M. R. C., Custodio, J. M. F., Naves, L. F. N., Vaz, W. F., Lobon, G. S., Martins, F. T., Perez, C. N. and Napolitano, H. B. (2018). A novel potencial anticancer chalcone: Synthesis, crystal structure and cytotoxic assay. Journal of Molecular Structure, 1168, 309-315, https://doi.org/10.1016/j.molstruc.2018.05.010.
  • Mishra, V. K., Mishra, M., Kashaw, V. and Kashaw, S. K. (2017). Synthesis of 1,3,5-trisubstituted pyrazolines asantimalarial and antimicrobial agents. Bioorganic & Medicinal Chemistry, 25(6), 1949-1962, https://doi.org/10.1016/j.bmc.2017.02.025.
  • Patel, N. B., Shaikh, F. M., Patel, H. R. and Rajani, D. (2016). Synthesis of 2-pyrazoline from pyridine based chalcone by conventional and microwave techniques: Their comparison and antimicrobial studies. Journal of Saudi Chemical Society, 20, 451-S456, https://doi.org/10.1016/j.jscs.2013.01.008.
  • Raghav, N., Garg, S. and Ravish, I. (2016). Conversion of 2'-substituted chalcones in the presence of BSA as evidenced by 1H NMR studies. International Journal of Biological Macromelecules, 85, 23-28, https://doi.org/10.1016/j.ijbiomac.2015.12.060.
  • Rana, M., Arif, R., Khan, F. I., Maurya, V., Singh, R., Faizan, M. I., Yasmeen, S., Dar, S. H., Alam, R., Sahu, A. and Ahmad, T. (2021). Pyrazoline analogs as potential anticancer agents and their apoptosis, molecular docking, MD simulation, DNA binding and antioxidant studies. Bioorganic Chemistry, 108, 104665, https://doi.org/10.1016/j.bioorg.2021.104665.
  • Sever, B., Altıntop, M. D., Radwan, M. O., Özdemir, A., Otsuka, M., Fujita, M. and Ciftci, H. I. (2019). Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors. European Journal of Medicinal Chemistry, 182, 111648, https://doi.org/10.1016/j.ejmech.2019.111648.
  • Sever, B., Türkeş, C., Altıntop, M. D., Demir, Y. and Beydemir, Ş. (2020). Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. International Journal of Biological Macromolecules, 163, 1970-1988, https://doi.org/10.1016/j.ijbiomac.2020.09.043.
  • Solanki, N. S., Yaduvanshi, K. S., Jain, V., Mishra, A. and Marothia, D. (2012). Synthesis of antimicrobial activities of di (substituted phenyl)-2 pyrazoline derivatives. International Journal of PharmTech Research, 4(4), 1464-1470.
  • Stefans, N. M., Toigo, J., Maioral, M. F., Jacques, A. V., Chiaradia-Delatorre, L. D., Perondi, D. M., Ribeiro, A. A. B., Bigolin, A., Pirath, I. M. S., Duarte, B. F., Nunes, R. J. and Santos-Silva, M. C. (2019). Synthesis of novel pyrazoline derivatives and the evaluation of death mechanisms involved in their antileukemic activity.Bioorganic & Medicinal Chemistry, 27(2), 375-382, https://doi.org/10.1016/j.bmc.2018.12.012.
  • Sun, H., Wang, X., Zhan, M., Liu, J. and Xie, Y. (2013). Facile synthesis of novel tetrasubstituted 1-pyrazolines from Baylis-Hillman adducts and acyl diazomethanes. Tetrahedron Letters, 54(29), 3846-3850, https://doi.org/10.1016/j.tetlet.2013.05.041.
  • Yar, M. S., Bakht, M. A., Siddiqui, A. A., Abdullah, M. M. and Clercq, E. D. (2009). Synthesis and evaluation of in vitro antiviral activity of novel phenoxy acetic acid derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 24, 876-882, https://doi.org/10.1080/14756360802447917.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gonca Çelik 0000-0002-4634-3354

Publication Date April 15, 2021
Submission Date November 23, 2020
Acceptance Date March 31, 2021
Published in Issue Year 2021

Cite

APA Çelik, G. (2021). Synthesis and structural characterization of novel pyrazoline derivatives. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 622-628. https://doi.org/10.17714/gumusfenbil.830149