Research Article
BibTex RIS Cite

Fındık protein hidrolizatlarının antioksidatif aktivitelerinin in silico analiz teknikleri ile öngörülmesi

Year 2019, , 345 - 353, 19.09.2019
https://doi.org/10.29050/harranziraat.470105

Abstract

Günümüzde biyoaktif peptitlerin üretimi ve analizi ile ilgili olarak birçok çalışma yapılmaktadır. Bu çalışmada, in silico yöntemler kullanılarak 3 gastrointestinal (Gİ) ve 3 Gİ olmayan enzim muamelesi ile hazırlanması muhtemel fındık (Corylus avellana L.) peptitlerinin antioksidatif davranışları değerlendirilmiştir. 10 Mart 2017 itibariyle, UniProt veri tabanında 469 fındık proteini listelenmiştir. Bu çalışmada, söz konusu proteinlerin bir alt kümesi (23 ribozomal protein) incelenmiştir ve in silico proteoliz yöntemleri ile antioksidatif peptitlerin üretimi için gastrointestinal (Gİ) proteazların (tripsin, pepsin, kimotripsin) etkinliği; termolisin, papain ve bromelain gibi Gİ olmayan proteazlarla karşılaştırılmıştır. Elde edilen muhtemel antioksidatif peptit dizilimleri ve bunların sayıları her bir proteaz için belirlenmiştir. Birçok durumda, Gİ proteazlarının antioksidatif peptitlerin üretiminde Gİ olmayan proteazlara oranla daha az etkili olduğu gösterilmiştir. Özellikle termolisin veya papain kullanımı ile elde edilmesi olası peptitlerin antioksidatif özelliği Gİ proteazlara baskındır. Örneğin söz konusu 23 proteinden termolisin kullanımı ile 37 antioksidatif peptit oluşurken tripsin ile toplam 10 antioksidatif peptit oluşması beklenmektedir. 23 protein ve 6 proteaz göz önüne alınarak yürütülen 138 analizin 44 tanesinde (incelenen bütün durumların yaklaşık %32’sinde) antioksidatif peptitlerin oluşma olasılığı saptanmıştır. Mevcut bulgulara dayanarak, fındık proteinlerinin antioksidatif peptitlerin üretimi için değerli bir kaynak olarak kabul edilmesi mümkün görünmektedir.


References

  • Agyei, D., Danquah MK., 2011. Industrial-Scale Manufacturing of Pharmaceutical-Grade Bioactive Peptides. Biotechnology Advances, 29 (3): 272-277.
  • Alasalvar, C., Amaral, J.S., Shadidi, F., 2006. Functional Lipid Characteristics of Turkish Tombul Hazelnut (Corylus avellana L.). Journal of Agricultural and Food Chemistry, 54: 10177-83.
  • Alasalvar, C., Amaral, J.S., Shadidi, F., 2009. Lipid Characteristics and Essential Minerals of Native Turkish Hazelnut Varieties (Corylus avellana L.). Food Chemistry, 113: 919-925.
  • Aydemir, L.Y., Gökbulut, A.A., Baran, Y., Yemenicioğlu, A., 2014. Bioactive, Functional and Edible Film-Forming Properties of Isolated Hazelnut (Corylus Avellana L.) Meal Proteins. Food Hydrocolloids, 36: 130-142.
  • Day, L., 2013. Proteins from Land Plants – Potential Resources for Human Nutrition and Food Security. Trends in Food Science and Technology, 32 (1): 25-42.Dogan, A., Siyakus, G., Severcan, F., 2007. FTIR Spectroscopic Characterization of Irradiated Hazelnut (Corylus avellana L.). Food Chemistry, 100: 1106-14.
  • Flinterman, A.E., Akkerdaas, J.H., Knulst, A.C., Van Ree, R., Pasmans, S.G., 2008. Hazelnut Allergy: from Pollen-Associated Mild Allergy to Severe Anaphylactic Reactions. Current Opinion in Allergy & Clinical Immunology, 8 (3): 261-265.
  • Gibbs, B.F., Zougman, A., Masse, R., Mulligan, C., 2004. Production and Characterization of Bioactive Peptides from Soy Hydrolysate and Soy-Fermented Food. Food Research International, 37 (2): 123-131.
  • Gobbetti, M, Stepaniak, L., De Angelis, M., Corsetti, A., Di Cagno, R., 2002. Latent Bioactive Peptides in Milk Proteins: Proteolytic Activation and Significance in Dairy Processing. Critical Reviews in Food Science and Nutrition, 42 (3): 223-239.
  • Gülseren, İ., 2018. In silico Methods to Identify ACE and DPP-IV Inhibitory Activities of Ribosomal Hazelnut Proteins. Available online, Journal of Food Measurement and Characterization, https://doi.org/10.1007/s11694-018-9878-1
  • Korhonen, H., Pihlanto, A., 2003. Food-Derived Bioactive Peptides-Opportunities for Designing Future Foods. Current Pharmaceutical Design, 9 (16): 1297-1308.
  • Korhonen, H., Pihlanto, A., 2006. Bioactive Peptides: Production and Functionality. International Dairy Journal, 16 (9): 945-960.
  • Korhonen, H., 2009. Milk-Derived Bioactive Peptides: From Science to Applications. Journal of Functional Foods, 1 (2): 177-187.
  • Köksal, A.İ., Artik, N., Şimşek, A., Güneş, N., 2006. Nutrient Composition of Hazelnut (Corylus avellana L.) Varieties Cultivated in Turkey. Food Chemistry, 99 (3): 509-515.
  • Minkiewicz, P., Dziuba, J., Iwaniak, A., Dziuba, M., Darewicz M., 2008. BIOPEP Database and Other Programs for Processing Bioactive Peptide Sequences. Journal of AOAC International, 91 : 965-980.
  • Miraliakbari, H., Shahidi, F., 2008. Antioxidant Activity of Minor Components of Tree Nut Oils. Food Chemistry, 111 (2): 421-427.
  • Nadathur, S., Wanadundara, J.P.D., Scanlin, L., 2016. Sustainable protein sources. 1st ed., Academic Press. 9780128027769.
  • Ortolani, C., Ballmer-Weber, B.K., Hansen, K.S., et al., 2000. Hazelnut Allergy: A Double-Blind, Placebo-Controlled Food Challenge Multicenter Study. Journal of Allergy and Clinical Immunology, 105 (3): 577-581.
  • Ozdemir, F., Akinci, İ., 2004. Physical and Nutritional Properties of Four Major Commercial Turkish Hazelnut Species. Journal of Food Engineering, 63 : 341-347.
  • Parcerisa, J., Richardson, D.G., Magdalena, R., Codony, R., Boatella, J., 1997. Fatty Acid Distribution in Polar and Nonpolar Lipid Classes of Hazelnut Oil (Corylus avellana L.). Journal of Agricultural and Food Chemistry, 45 : 3887-90.
  • Richardson, D.G., 1997. The Health Benefits of Eating Hazelnuts: Implications for Blood Lipid Profiles, Coronary Heart Disease, and Cancer Risks. Acta Horticulturae, 415 : 295–297.
  • Vermeirssen, V., Van Camp, J., Verstraete, W., 2004. Bioavailability of Angiotensin I Converting Enzyme Inhibitory Peptides. British Journal of Nutrition, 92 : 357-366.
  • Vieths, S., Reindl, J., Müller, U., Hoffmann, A., Haustein, D., 1999. Digestibility of Peanut and Hazelnut Allergens Investigated By a Simple In Vitro Procedure. European Food Research & Technology, 209(6): 379-388.

Antioxidative activities of hazelnut protein hydrolyzates as predicted by in silico analysis techniques

Year 2019, , 345 - 353, 19.09.2019
https://doi.org/10.29050/harranziraat.470105

Abstract

Recently, a variety of studies have been carried out on the production and analysis of bioactive peptides. Here, based on in silico methods, antioxidative behavior of hazelnut (Corylus avellana L.) peptides, which could be prepared by enzymatic treatments with 3 gastrointestinal (GI) and 3 non-GI enzymes were evaluated. On 10/03/2017, UniProt database listed 469 hazelnut proteins. In the current study, a subset (23 ribosomal proteins) of these proteins were examined and the activity of the GI proteases (trypsin, pepsin, chymotrypsin) for the production of antioxidative peptides were compared to non-GI proteases (thermolysin, papain and bromelain). Firstly, potential antioxidative peptide sequences were determined. GI proteases were less effective compared to non-GI proteases in the manufacture of antioxidative peptides. Antioxidative property of peptides, which were obtained by thermolysin or papain treatments, were significantly higher compared to GI proteases. When all 23 proteins were treated 37 antioxidative peptides were formed by thermolysin, while 10 antioxidative peptides were predicted for trypsin. Of the 138 cases studied (23 proteins x 6 proteases), 44 antioxidative peptides were detected (i.e., 1 peptide in approx. 32% of all cases). Based on current findings, hazelnut proteins can be considered a valuable resource for antioxidative peptide manufacture.


References

  • Agyei, D., Danquah MK., 2011. Industrial-Scale Manufacturing of Pharmaceutical-Grade Bioactive Peptides. Biotechnology Advances, 29 (3): 272-277.
  • Alasalvar, C., Amaral, J.S., Shadidi, F., 2006. Functional Lipid Characteristics of Turkish Tombul Hazelnut (Corylus avellana L.). Journal of Agricultural and Food Chemistry, 54: 10177-83.
  • Alasalvar, C., Amaral, J.S., Shadidi, F., 2009. Lipid Characteristics and Essential Minerals of Native Turkish Hazelnut Varieties (Corylus avellana L.). Food Chemistry, 113: 919-925.
  • Aydemir, L.Y., Gökbulut, A.A., Baran, Y., Yemenicioğlu, A., 2014. Bioactive, Functional and Edible Film-Forming Properties of Isolated Hazelnut (Corylus Avellana L.) Meal Proteins. Food Hydrocolloids, 36: 130-142.
  • Day, L., 2013. Proteins from Land Plants – Potential Resources for Human Nutrition and Food Security. Trends in Food Science and Technology, 32 (1): 25-42.Dogan, A., Siyakus, G., Severcan, F., 2007. FTIR Spectroscopic Characterization of Irradiated Hazelnut (Corylus avellana L.). Food Chemistry, 100: 1106-14.
  • Flinterman, A.E., Akkerdaas, J.H., Knulst, A.C., Van Ree, R., Pasmans, S.G., 2008. Hazelnut Allergy: from Pollen-Associated Mild Allergy to Severe Anaphylactic Reactions. Current Opinion in Allergy & Clinical Immunology, 8 (3): 261-265.
  • Gibbs, B.F., Zougman, A., Masse, R., Mulligan, C., 2004. Production and Characterization of Bioactive Peptides from Soy Hydrolysate and Soy-Fermented Food. Food Research International, 37 (2): 123-131.
  • Gobbetti, M, Stepaniak, L., De Angelis, M., Corsetti, A., Di Cagno, R., 2002. Latent Bioactive Peptides in Milk Proteins: Proteolytic Activation and Significance in Dairy Processing. Critical Reviews in Food Science and Nutrition, 42 (3): 223-239.
  • Gülseren, İ., 2018. In silico Methods to Identify ACE and DPP-IV Inhibitory Activities of Ribosomal Hazelnut Proteins. Available online, Journal of Food Measurement and Characterization, https://doi.org/10.1007/s11694-018-9878-1
  • Korhonen, H., Pihlanto, A., 2003. Food-Derived Bioactive Peptides-Opportunities for Designing Future Foods. Current Pharmaceutical Design, 9 (16): 1297-1308.
  • Korhonen, H., Pihlanto, A., 2006. Bioactive Peptides: Production and Functionality. International Dairy Journal, 16 (9): 945-960.
  • Korhonen, H., 2009. Milk-Derived Bioactive Peptides: From Science to Applications. Journal of Functional Foods, 1 (2): 177-187.
  • Köksal, A.İ., Artik, N., Şimşek, A., Güneş, N., 2006. Nutrient Composition of Hazelnut (Corylus avellana L.) Varieties Cultivated in Turkey. Food Chemistry, 99 (3): 509-515.
  • Minkiewicz, P., Dziuba, J., Iwaniak, A., Dziuba, M., Darewicz M., 2008. BIOPEP Database and Other Programs for Processing Bioactive Peptide Sequences. Journal of AOAC International, 91 : 965-980.
  • Miraliakbari, H., Shahidi, F., 2008. Antioxidant Activity of Minor Components of Tree Nut Oils. Food Chemistry, 111 (2): 421-427.
  • Nadathur, S., Wanadundara, J.P.D., Scanlin, L., 2016. Sustainable protein sources. 1st ed., Academic Press. 9780128027769.
  • Ortolani, C., Ballmer-Weber, B.K., Hansen, K.S., et al., 2000. Hazelnut Allergy: A Double-Blind, Placebo-Controlled Food Challenge Multicenter Study. Journal of Allergy and Clinical Immunology, 105 (3): 577-581.
  • Ozdemir, F., Akinci, İ., 2004. Physical and Nutritional Properties of Four Major Commercial Turkish Hazelnut Species. Journal of Food Engineering, 63 : 341-347.
  • Parcerisa, J., Richardson, D.G., Magdalena, R., Codony, R., Boatella, J., 1997. Fatty Acid Distribution in Polar and Nonpolar Lipid Classes of Hazelnut Oil (Corylus avellana L.). Journal of Agricultural and Food Chemistry, 45 : 3887-90.
  • Richardson, D.G., 1997. The Health Benefits of Eating Hazelnuts: Implications for Blood Lipid Profiles, Coronary Heart Disease, and Cancer Risks. Acta Horticulturae, 415 : 295–297.
  • Vermeirssen, V., Van Camp, J., Verstraete, W., 2004. Bioavailability of Angiotensin I Converting Enzyme Inhibitory Peptides. British Journal of Nutrition, 92 : 357-366.
  • Vieths, S., Reindl, J., Müller, U., Hoffmann, A., Haustein, D., 1999. Digestibility of Peanut and Hazelnut Allergens Investigated By a Simple In Vitro Procedure. European Food Research & Technology, 209(6): 379-388.
There are 22 citations in total.

Details

Primary Language English
Subjects Food Engineering, Agricultural Engineering
Journal Section Araştırma Makaleleri
Authors

İbrahim Gülseren 0000-0002-7339-1159

Publication Date September 19, 2019
Submission Date October 12, 2018
Published in Issue Year 2019

Cite

APA Gülseren, İ. (2019). Antioxidative activities of hazelnut protein hydrolyzates as predicted by in silico analysis techniques. Harran Tarım Ve Gıda Bilimleri Dergisi, 23(3), 345-353. https://doi.org/10.29050/harranziraat.470105

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.