Research Article
BibTex RIS Cite

Odun lifi takviyeli polivinil asetat rijit köpük tasarımı ve üretimi

Year 2020, Volume: 7 Issue: 2, 104 - 112, 01.12.2020
https://doi.org/10.17568/ogmoad.644334

Abstract

Bu çalışmada, dondur-kurut tekniği kullanılarak tasarlanmış ve üretilmiş rijit köpükler polivinil asetattan (PVAc), ağartılmış kraft hamurundan ve ağartılmamış kraft hamurundan yapılmıştır. Rijit köpük çevre dostu bir ürün olarak üretim aşamasında pentan veya hidrokloroflorokarbon içermemektedir. PVAc bazlı köpük farklı oranlarda kraft hamuru ile güçlendirilmiştir. Basınç, eğilme kuvvetleri, fiziksel ve morfolojik özellikleri gibi performans özellikleri ilgili standartlara göre incelenmiştir. Köpük yoğunlukları %17,65 varyasyon katsayısı (CV) ile 0,018 g/cm3 ve %2,33 CV ile 0,137 g/cm3 arasında değişmektedir. Basınç direnci %50,00 CV ile 0,001 N/mm2 ve %5,98 CV ile 0.03 N/mm2 arasında değişmektedir. Eğilme direnci ise %20,00 CV ile 0,005 N/mm2 ve %6,06 CV ile 0,11 N/mm2 arasında bulunmuştur. Optimum özellikler B-4’ten (PVAc/Ağartılmış Kraft hamuru 1/0.8) elde edilmiştir. Ağartılmış kraft hamur takviyesi, ağartılmamış kraft hamur takviyesine kıyasla köpük malzemenin performans özellikleri üzerinde daha iyi sonuçlar vermiştir. Tüm test sonuçlarına göre PVAc bazlı rijit köpüğün umut verici sonuçlar sergilediği gözlenmiştir.

Supporting Institution

Muğla Sıtkı Koçman Üniversitesi Bilimsel Araştırma Projeleri

Project Number

17/246 18/012

References

  • Ahmadzadeh S, Nasirpour A, Keramat J, Hamdami N, Behzad T, Desobry S., 2015. Nanoporous cellulose nanocomposite foams as high insulated food packaging materials. Colloids Surf A 468:201–210.
  • BWPA, 2019. What is Wood Pulp? https://www.bwpa.org.uk/wood-pulp/ (Last visited: 12.08.2019)
  • Crowly J., Bell D., and Kopp-Holtwiesche B., 2005. Environmentally-favorable erosion control with a polyvinyl acetatebased formulation. Quattro Environmental, Inc. TechnicalReport
  • Dash, R., Li, Y., & Ragauskas, A. J., 2012. Cellulose nanowhisker foams by freeze casting. Carbohydrate polymers 88(2), 789-792.
  • de Rodriguez, N. L. G., Thielemans, W., & Dufresne, A., 2006. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13(3), 261-270.
  • Garcia de Rodriguez, N. L., Thielemans, W., & Dufresne, A., 2006. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13(3), 261–270.
  • Geng, S., Haque, M. M.-U., & Oksman, K., 2016. Crosslinked poly(vinyl acetate) (PVAc) reinforced with cellulose nanocrystals (CNC): Structure and mechanical properties. Composites Science and Technology 126,35–42.
  • Glenn, G. M., & Irving, D. W., 1995. Starch-based microcellular foams. Cereal Chemistry 72(2), 155-161.
  • Glenn, G. M., & Orts, W. J., 2001. Properties of starch-based foam formed by compression/explosion processing. Industrial Crops and Products 13(2), 135-143.
  • Glenn, G. M., Orts, W. J., & Nobes, G. A. R., 2001. Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process. Industrial Crops and Products 14(3), 201-212.
  • Gong, G., Mathew, A. P., & Oksman, K., 2011. Toughening effect of cellulose nanowhiskers on polyvinyl acetate: fracture toughness and viscoelastic analysis. Polymer Composites 32(10), 1492–1498.
  • Gong, G., Pyo, J., Mathew, A. P., & Oksman, K., 2011. Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc). Composites Part A: Applied Science and Manufacturing 42(9), 1275–1282.
  • Guan, J., & Hanna, M. A., 2004. Extruding foams from corn starch acetate and native corn starch. Biomacromolecules 5(6), 2329-2339.
  • Hamou, K. B., Kaddami, H., Dufresne, A., Boufi, S., Magnin, A., & Erchiqui, F. (2018). Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites. Carbohydrate polymers 181, 1061-1070.
  • Heydarifard, S., Pan, Y., Xiao, H., Nazhad, M. M., & Shipin, O., 2017. Water-resistant cellulosic filter containing non-leaching antimicrobial starch for water purification and disinfection. Carbohydrate polymers 163, 146-152.
  • Iwamoto, S., Kai, W., Isogai, A., & Iwata, T., 2009. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9), 2571–2576.
  • Iwatake, A., Nogi, M., & Yano, H., 2008. Cellulose nanofiber-reinforced polylactic acid. Composites Science and Technology 68(9), 2103–2106.
  • Jennings, T. A., 1999. Lyophilization: introduction and basic principles. CRC press.
  • Kaboorani, A., Riedl, B., Blanchet, P., Fellin, M., Hosseinaei, O., & Wang, S., 2012. Nanocrystalline cellulose (NCC): A renewable nano-material for polyvinyl acetate (PVA) adhesive. European Polymer Journal 48(11), 1829-1837.
  • Kang, J. S., Choi, G. S., & Kwon, An, Y. C., 2008. Innovative Foam Insulation Produced from Cellulose. In Proceedings of BEST3 Conference (pp. 2-4).
  • Lee, S. T., & Ramesh, N. S. (Eds.)., 2004. Polymeric foams: mechanisms and materials. CRC press.
  • Li, Y., Wang, B., Sui, X., Xu, H., Zhang, L., Zhong, Y., & Mao, Z., 2017. Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose 24(9), 3815-3823.
  • Mathew, A. P., Gong, G., Bjorngrim, N., Wixe, D., & Oksman, K., 2011. Moisture absorption behavior and its impact on the mechanical properties of cellulose whiskersbased polyvinylacetate nanocomposites. Polymer Engineering & Science 51(11), 2136–2142
  • Ottenhall, A., Seppänen, T., & Ek, M., 2018. Water-stable cellulose fiber foam with antimicrobial properties for bio based low-density materials. Cellulose 25(4), 2599-2613.
  • Radvan, B., 1964. Basic Radfoam process, British Patent 1329409
  • Roohani, M., Habibi, Y., Belgacem, N. M., Ebrahim, G., Karimi, A. N., & Dufresne, A., 2008. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal 44(8), 2489–2498
  • Salgado, P. R., Schmidt, V. C., Ortiz, S. E. M., Mauri, A. N., & Laurindo, J. B., 2008. Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. Journal of Food Engineering 85(3), 435-443.
  • Shey, J., Imam, S. H., Glenn, G. M., & Orts, W. J., 2006. Properties of baked starch foam with natural rubber latex. Industrial Crops and Products 24(1), 34-40.
  • Shogren, R. L., Lawton, J. W., & Tiefenbacher, K. F., 2002. Baked starch foams: starch modifications and additives improve process parameters, structure and properties. Industrial Crops and products 16(1), 69-79.
  • Sjöqvist, M., & Gatenholm, P., 2005. The effect of starch composition on structure of foams prepared by microwave treatment. Journal of Polymers and the Environment 13(1), 29-37.
  • Soykeabkaew, N., Supaphol, P., & Rujiravanit, R., 2004. Preparation and characterization of jute-and flax-reinforced starch-based composite foams. Carbohydrate Polymers 58(1), 53-63.
  • Soykeabkaew, N., Supaphol, P., & Rujiravanit, R., 2004. Preparation and characterization of jute-and flax-reinforced starch-based composite foams. Carbohydrate Polymers 58(1), 53-63.
  • Suryanegara, L., Nakagaito, A. N., & Yano, H., 2009. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology 69(7–8), 1187–1192.
  • Svagan, A. J., Samir, M. A. A., & Berglund, L. A., 2008. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Advanced Materials 20(7), 1263-1269.
  • Thoughtco. 2019. What Is EPS or Expanded Polystyrene? https://www.thoughtco.com/what-is-eps-expanded-polystyrene-820450 (Last visited: 12.08.2019)
  • Trejo A.G., 1988. Fungal degradation of polyvinyl acetate.Ecotox. Environ. Safe 16(1): 25 –35
  • Wikipedia, 2019. Polyvinyl acetate. https://en.wikipedia.org/wiki/Polyvinyl_acetate (Last visited: 12.08.2019)
  • Yang L, Peng L, Huining X, Solmaz H, Shuangfei, W., 2017. Novel aqueous spongy foams made of three-dimensionally dispersed wood-fiber: entrapment and stabilization with NFC/MFC within capillary foams, Cellulose,24:241–251 DOI 10.1007/s10570-016-1103-y.
  • Yildirim, N., 2018. Performance Comparison of Bio-based Thermal Insulation Foam Board with Petroleum-based Foam Boards on the Market. BioResources 13(2), 3395-3403

Manufacture of wood fiber reinforced polyvinyl acetate rigid foams

Year 2020, Volume: 7 Issue: 2, 104 - 112, 01.12.2020
https://doi.org/10.17568/ogmoad.644334

Abstract

In this work, rigid foams designed and manufactured using the freezedrying technique were made from polyvinyl acetate (PVAc), bleached kraft pulp and unbleached kraft pulp. The rigid foams designed as an environmentally-friendly product with no pentane or hydrochlorofluorocarbon included in the manufacturing process. The PVAc based foams were reinforced with different kraft pulp contents. Their performance properties such as compressive and flexural strength, physical and morphological properties were investigated according to relevant standards. The foam densities ranged from 0,017 g/cm3 with %17,65 coefficient of variation (CV) to 0,137 g/cm3 with %2,33 CV. The compression resistance was found between 0,001 N/mm2 with %50,00 CV and 0,03 N/mm2 with %5,98 CV. The flexural resistance was found between 0,005 N/mm2 with %20,00 CV and 0,11 N/mm2 with %6,06 CV. Optimum properties were observed B-4 (PVAc/Bleached Kraft pulp 1/0.8). Bleached kraft pulp reinforcement gave better results on performance characteristics of foam materials compared to unbleached kraft pulp reinforcement. Overall test results showed that the PVAc based rigid foams have promising results.

Project Number

17/246 18/012

References

  • Ahmadzadeh S, Nasirpour A, Keramat J, Hamdami N, Behzad T, Desobry S., 2015. Nanoporous cellulose nanocomposite foams as high insulated food packaging materials. Colloids Surf A 468:201–210.
  • BWPA, 2019. What is Wood Pulp? https://www.bwpa.org.uk/wood-pulp/ (Last visited: 12.08.2019)
  • Crowly J., Bell D., and Kopp-Holtwiesche B., 2005. Environmentally-favorable erosion control with a polyvinyl acetatebased formulation. Quattro Environmental, Inc. TechnicalReport
  • Dash, R., Li, Y., & Ragauskas, A. J., 2012. Cellulose nanowhisker foams by freeze casting. Carbohydrate polymers 88(2), 789-792.
  • de Rodriguez, N. L. G., Thielemans, W., & Dufresne, A., 2006. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13(3), 261-270.
  • Garcia de Rodriguez, N. L., Thielemans, W., & Dufresne, A., 2006. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13(3), 261–270.
  • Geng, S., Haque, M. M.-U., & Oksman, K., 2016. Crosslinked poly(vinyl acetate) (PVAc) reinforced with cellulose nanocrystals (CNC): Structure and mechanical properties. Composites Science and Technology 126,35–42.
  • Glenn, G. M., & Irving, D. W., 1995. Starch-based microcellular foams. Cereal Chemistry 72(2), 155-161.
  • Glenn, G. M., & Orts, W. J., 2001. Properties of starch-based foam formed by compression/explosion processing. Industrial Crops and Products 13(2), 135-143.
  • Glenn, G. M., Orts, W. J., & Nobes, G. A. R., 2001. Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process. Industrial Crops and Products 14(3), 201-212.
  • Gong, G., Mathew, A. P., & Oksman, K., 2011. Toughening effect of cellulose nanowhiskers on polyvinyl acetate: fracture toughness and viscoelastic analysis. Polymer Composites 32(10), 1492–1498.
  • Gong, G., Pyo, J., Mathew, A. P., & Oksman, K., 2011. Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc). Composites Part A: Applied Science and Manufacturing 42(9), 1275–1282.
  • Guan, J., & Hanna, M. A., 2004. Extruding foams from corn starch acetate and native corn starch. Biomacromolecules 5(6), 2329-2339.
  • Hamou, K. B., Kaddami, H., Dufresne, A., Boufi, S., Magnin, A., & Erchiqui, F. (2018). Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites. Carbohydrate polymers 181, 1061-1070.
  • Heydarifard, S., Pan, Y., Xiao, H., Nazhad, M. M., & Shipin, O., 2017. Water-resistant cellulosic filter containing non-leaching antimicrobial starch for water purification and disinfection. Carbohydrate polymers 163, 146-152.
  • Iwamoto, S., Kai, W., Isogai, A., & Iwata, T., 2009. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9), 2571–2576.
  • Iwatake, A., Nogi, M., & Yano, H., 2008. Cellulose nanofiber-reinforced polylactic acid. Composites Science and Technology 68(9), 2103–2106.
  • Jennings, T. A., 1999. Lyophilization: introduction and basic principles. CRC press.
  • Kaboorani, A., Riedl, B., Blanchet, P., Fellin, M., Hosseinaei, O., & Wang, S., 2012. Nanocrystalline cellulose (NCC): A renewable nano-material for polyvinyl acetate (PVA) adhesive. European Polymer Journal 48(11), 1829-1837.
  • Kang, J. S., Choi, G. S., & Kwon, An, Y. C., 2008. Innovative Foam Insulation Produced from Cellulose. In Proceedings of BEST3 Conference (pp. 2-4).
  • Lee, S. T., & Ramesh, N. S. (Eds.)., 2004. Polymeric foams: mechanisms and materials. CRC press.
  • Li, Y., Wang, B., Sui, X., Xu, H., Zhang, L., Zhong, Y., & Mao, Z., 2017. Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose 24(9), 3815-3823.
  • Mathew, A. P., Gong, G., Bjorngrim, N., Wixe, D., & Oksman, K., 2011. Moisture absorption behavior and its impact on the mechanical properties of cellulose whiskersbased polyvinylacetate nanocomposites. Polymer Engineering & Science 51(11), 2136–2142
  • Ottenhall, A., Seppänen, T., & Ek, M., 2018. Water-stable cellulose fiber foam with antimicrobial properties for bio based low-density materials. Cellulose 25(4), 2599-2613.
  • Radvan, B., 1964. Basic Radfoam process, British Patent 1329409
  • Roohani, M., Habibi, Y., Belgacem, N. M., Ebrahim, G., Karimi, A. N., & Dufresne, A., 2008. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal 44(8), 2489–2498
  • Salgado, P. R., Schmidt, V. C., Ortiz, S. E. M., Mauri, A. N., & Laurindo, J. B., 2008. Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. Journal of Food Engineering 85(3), 435-443.
  • Shey, J., Imam, S. H., Glenn, G. M., & Orts, W. J., 2006. Properties of baked starch foam with natural rubber latex. Industrial Crops and Products 24(1), 34-40.
  • Shogren, R. L., Lawton, J. W., & Tiefenbacher, K. F., 2002. Baked starch foams: starch modifications and additives improve process parameters, structure and properties. Industrial Crops and products 16(1), 69-79.
  • Sjöqvist, M., & Gatenholm, P., 2005. The effect of starch composition on structure of foams prepared by microwave treatment. Journal of Polymers and the Environment 13(1), 29-37.
  • Soykeabkaew, N., Supaphol, P., & Rujiravanit, R., 2004. Preparation and characterization of jute-and flax-reinforced starch-based composite foams. Carbohydrate Polymers 58(1), 53-63.
  • Soykeabkaew, N., Supaphol, P., & Rujiravanit, R., 2004. Preparation and characterization of jute-and flax-reinforced starch-based composite foams. Carbohydrate Polymers 58(1), 53-63.
  • Suryanegara, L., Nakagaito, A. N., & Yano, H., 2009. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology 69(7–8), 1187–1192.
  • Svagan, A. J., Samir, M. A. A., & Berglund, L. A., 2008. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Advanced Materials 20(7), 1263-1269.
  • Thoughtco. 2019. What Is EPS or Expanded Polystyrene? https://www.thoughtco.com/what-is-eps-expanded-polystyrene-820450 (Last visited: 12.08.2019)
  • Trejo A.G., 1988. Fungal degradation of polyvinyl acetate.Ecotox. Environ. Safe 16(1): 25 –35
  • Wikipedia, 2019. Polyvinyl acetate. https://en.wikipedia.org/wiki/Polyvinyl_acetate (Last visited: 12.08.2019)
  • Yang L, Peng L, Huining X, Solmaz H, Shuangfei, W., 2017. Novel aqueous spongy foams made of three-dimensionally dispersed wood-fiber: entrapment and stabilization with NFC/MFC within capillary foams, Cellulose,24:241–251 DOI 10.1007/s10570-016-1103-y.
  • Yildirim, N., 2018. Performance Comparison of Bio-based Thermal Insulation Foam Board with Petroleum-based Foam Boards on the Market. BioResources 13(2), 3395-3403
There are 39 citations in total.

Details

Primary Language English
Journal Section Forest Products
Authors

Mehmet Emin Ergün 0000-0002-9938-7561

Ertan Özen 0000-0002-2593-0146

Nadir Yıldırım 0000-0003-2751-9593

Berk Dalkılıç 0000-0002-0457-1244

Project Number 17/246 18/012
Publication Date December 1, 2020
Submission Date November 8, 2019
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

APA Ergün, M. E., Özen, E., Yıldırım, N., Dalkılıç, B. (2020). Manufacture of wood fiber reinforced polyvinyl acetate rigid foams. Ormancılık Araştırma Dergisi, 7(2), 104-112. https://doi.org/10.17568/ogmoad.644334
Creative Commons License
Turkish Journal of Forestry Research is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.