Research Article
BibTex RIS Cite

Biomechanical Effects of Four Different Configurations In Salter Harris Type 4 Distal Femoral Epiphyseal Fractures

Year 2020, , 151 - 159, 01.03.2020
https://doi.org/10.2339/politeknik.474787

Abstract


Bu çalışmada, distal femurun Salter Harris (SH) Tip 4 epifiz kırığında
redüksiyon sonrası stabilizasyon için kullanılan
Parallel K-wires, Parallel Screw, Upper K-wire-Lower
Screw, Upper Screw-Lower K-wire
olmak üzere 4 farklı
konfigürasyonun, aksiyel, rotasyonel ve eğme kuvvetleri altında,  biyomekanik etkilerini tanımlayıp hangisinin
daha avantajlı olduğu araştırıldı. 4 farklı konfigürasyon SolidWorks programı
ile modellendi ve bilgisayar destekli sayısal analizler sonlu elemanlar
yazılımı ile gerçekleştirildi. Herbir konfigürasyon için, ağ süreci, sınır
şartları ve malzeme modeli sonlu elemanlar yazılımında uygulandı. Buna ek
olarak, epifiz plağının gelişimindeki
von-Mises gerilme değerleri, vidalar ve K-tellerindeki gerilme değerleri
hesaplanmıştır.
Frontal,
sagittal ve transvers düzlemde bükme (varus-valgus açılımı, ön-arka açısal
kapanma) ve burulma kuvvetleri altındaki fizis çizgi üzerinde tüm
konfigürasyonlarda gerilme değerlerinde genel olarak yakın bir eğilim vardır. Eksenel
kuvvetler düşünüldüğünde, en yüksek gerilme, fisizte paralel K-telleri
konfigürasyonunda bulunurken, en düşük gerilme paralel vida konfigürasyonunda
bulundu.
Paralel vida konfigürasyonunda fiksasyon
tipinin kullanılması avantajlı bulunmuştur.
Ek olarak, SH tipi 4 epifiz kırıklarında,
K-teli konfigürasyonunda fiksasyon tipi dezavantajlı bulunmuştur.




References

  • [1] SALTER RB, HARRIS WR. Injuries Involving the Epiphyseal Plate1963, p.587-622.[2] Sferopoulos NK. "The Classification of Physeal Injuries", ARC Journal of Orthopedics 1(1): 23-7, (2016).[3] D.C. Mann , Rajmaira S. "Distribution of physeal and nonphyseal fractures in 2,650 long-bone fractures in children aged 0-16 years", J Pediatr Orthoped, 10(6): 713-6, (1990).[4] Peterson HA, Madhok R BJ, Ilstrup DM, Melton LJ. "Physeal fractures: Part 1. Epidemiology in Olmsted County, Minnesota, 1979-1988", J Pediatr Orthoped, 14(4): 423-30, (1994).[5] Basener CJ, Mehlman CT, TG D. "Growth disturbance after distal femoral growth plate fractures in children: a meta-analysis", J Orthop Trauma, 23(9): 663-7, (2009).[6] Eid AM, Hafez MA. "Traumatic injuries of the distal femoral physis. Retrospective study on 151 cases", Injury, 33(3): 251-5, (2002).[7] Dahl WJ, Silva S, Vanderhave KL. "Distal Femoral Physeal Fixation: Are Smooth Pins Really Safe?", J Pediatr Orthoped, 34(2): 134-8 10.1097/BPO.0000000000000083, (2014).[8] Liu RW, Armstrong DG, Levine AD, Gilmore A, Thompson GH, Cooperman DR. "An Anatomic Study of the Distal Femoral Epiphysis", J Pediatr Orthoped, 33(7): 743-9 10.1097/BPO.0b013e31829d55bf, (2013).[9] Lombardo S, Harvey JJ. "Fractures of the distal femoral epiphyses. Factors influencing prognosis: a review of thirty-four cases", JBJS, 59(6): 742-51, (1977).[10] Beaty JH, Rockwood CA, Kasser JR. Rockwood and Wilkins' Fractures in Children: Wolters Kluwer/Lippincott, Williams & Wilkins, 2010.[11] JA. H. Lower extremity injuries. Tachdjian’s Pediatric Orthopaedics: USA: W.B. Saunders Company, 2002, p. 2327-34.[12] Garcés GL, Mugica-Garay I, López-González Coviella N, E G. "Growth-plate modifications after drilling", J Pediatr Orthop 14(2): 225-8, (1994).[13] Janarv P-M, Wikström B, Hirsch G. "The Influence of Transphyseal Drilling and Tendon Grafting on Bone Growth: An Experimental Study in the Rabbit", J Pediatr Orthoped, 18(2): 149-54, (1998).[14] Buch BD, Myerson MS. "Salter-Harris type IV epiphyseal fracture of the proximal phalanx of the great toe: a case report", Foot & ankle international, 16(4): 216-9, (1995).[15] Zionts. LE. Fractures and dislocations about the knee. Skeletal Trauma in Children: USA: Saunders, 2003, p. 443-9.[16] http://www.wheelessonline.com/. 2014.[17] Gok K, Inal S, Gok A, Pinar AM. "Biomechanical effects of three different configurations in Salter Harris type 3 distal femoral epiphyseal fractures", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(4): 1069-77, (2017).[18] Gok K, Inal S, Gok A, Pinar AM. "Biomechanical effects of three different configurations in Salter Harris type 3 distal femoral epiphyseal fractures", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 1-9, (2016).[19] Gok K. "Development of three-dimensional finite element model to calculate the turning processing parameters in turning operations", Measurement, 75(57-68, (2015).[20] Inal S, Taspinar F, Gulbandilar E, Gok K. "Comparison of the biomechanical effects of pertrochanteric fixator and dynamic hip screw on an intertrochanteric femoral fracture using the finite element method", The International Journal of Medical Robotics and Computer Assisted Surgery, 11(1): 95-103, (2015).[21] ERDEM M, GOK K, GOKCE B, GOK A. "NUMERICAL ANALYSIS OF TEMPERATURE, SCREWING MOMENT AND THRUST FORCE USING FINITE ELEMENT METHOD IN BONE SCREWING PROCESS", Journal of Mechanics in Medicine and Biology, 1750016, (2016).[22] Gok A, Inal S, Taspinar F, Gulbandilar E, Gok K. "Fatigue behaviors of different materials for schanz screws in femoral fracture model using finite element analysis", Optoelectroin and Adv Mater Rapid Commun, 8(5-6): 576-80, (2014).[23] Afsar E, Taspinar F, Calik BB, Ozkan Y, Gok K. "Use of the finite element analysis to determine stresses in the knee joints of osteoarthritis patients with different Q angles", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 1-7, (2016).[24] Gok K, Taspinar F, Inal S, Gulbandilar E. "IMPORTANCE OF SIDEBAR-BONE SPACING DURING THE APPLICATION OF PERTROCHANTERIC FIXATOR ON FEMORAL INTERTROCHANTERIC FRACTURE MODEL; COMPARISON OF THE BIOMECHANICAL EFFECTS USING FINITE ELEMENT METHOD", Biomedical Engineering: Applications, Basis and Communications, 27(03): 1550030, (2015).[25] Goffin JM, Pankaj P, Simpson AH. "The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: A subject-specific finite element study", J Orthopaed Res, 31(4): 596-600, (2013).[26] Atmaca H, Kesemenli C, Memişoğlu K, Özkan A, Celik Y. "Changes in the loading of tibial articular cartilage following medial meniscectomy: a finite element analysis study", Knee Surg Sports Traumatol Arthrosc, 21(12): 2667-73, (2013).[27] AnsysWorkbench. Material Library. 2014.[28] Yuan-Kun T, Yau-Chia L, Wen-Jen Y, et al. Temperature Rise Simulation During a Kirschner Pin Drilling in Bone. Bioinformatics and Biomedical Engineering , 2009 ICBBE 2009 3rd International Conference on2009, p. 1-4.[29] Peña E, Calvo B, Martínez MA, Palanca D, Doblaré M. "Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics", Clin Biomech, 20(5): 498-507, (2005).[30] Brown JH, DeLuca SA. "Growth plate injuries: Salter-Harris classification.", American Family Physician 46(4): 1180-4, (1992).[31] Eiff MP, Hatch R, Calmbach WL. Fracture Management for Primary Care: Saunders, 1998.[32] SEYHAN F, GÖKSAN SB. Çocuk Kırıkları. Ortopedik Travmatoloji: Nobel Tıp Kitabevleri 2002, p. 89-101.[33] Wall EJ, May MM. "Growth plate fractures of the distal femur", Journal of Pediatric Orthopaedics, 32(S40-S6, (2012).

Biomechanical Effects of Four Different Configurations In Salter Harris Type 4 Distal Femoral Epiphyseal Fractures

Year 2020, , 151 - 159, 01.03.2020
https://doi.org/10.2339/politeknik.474787

Abstract

In this study, the
biomechanicaleffects of four different configurations (Parallel K wires,
Parallel Screw, Upper K wire-Lower Screw, Upper Screw-Lower K wire), which are
used for stabilizing Salter-Harris (SH) Type 4 epiphyseal fracture of distal
femur after reduction process, on the epiphyseal plate has been investigated
under axial, rotational and bendingforces in order to determine the most
advantageous configuration. The fourdifferent configurations have been modeled
by using SolidWorks and computer-aided numerical analyses were performed by
finite element analysis software. The mesh process, boundary conditions and
material model have been applied in finite element analysis software for each
configuration. In addition, von-Mises stress values on epiphyseal plate, screws
and K wires have been calculated. There is a general near trend on stress
values in all configurations on physis line under bending (varus-valgus
angulation, anterior-posterior angulation) and torsional forces in the frontal,
sagittal and transverse plane respectively. Considering the axial forces, the
highest stress was found on parallel K- wires configuration in physis while the
lowest stress was found in parallel screw configuration. It has been found
particularly advantageous to use fixation type in parallel screw configuration.
In addition, in SH type 4 epiphyseal fracture, fixation type is found to be
disadvantageous in K wire configuration.

References

  • [1] SALTER RB, HARRIS WR. Injuries Involving the Epiphyseal Plate1963, p.587-622.[2] Sferopoulos NK. "The Classification of Physeal Injuries", ARC Journal of Orthopedics 1(1): 23-7, (2016).[3] D.C. Mann , Rajmaira S. "Distribution of physeal and nonphyseal fractures in 2,650 long-bone fractures in children aged 0-16 years", J Pediatr Orthoped, 10(6): 713-6, (1990).[4] Peterson HA, Madhok R BJ, Ilstrup DM, Melton LJ. "Physeal fractures: Part 1. Epidemiology in Olmsted County, Minnesota, 1979-1988", J Pediatr Orthoped, 14(4): 423-30, (1994).[5] Basener CJ, Mehlman CT, TG D. "Growth disturbance after distal femoral growth plate fractures in children: a meta-analysis", J Orthop Trauma, 23(9): 663-7, (2009).[6] Eid AM, Hafez MA. "Traumatic injuries of the distal femoral physis. Retrospective study on 151 cases", Injury, 33(3): 251-5, (2002).[7] Dahl WJ, Silva S, Vanderhave KL. "Distal Femoral Physeal Fixation: Are Smooth Pins Really Safe?", J Pediatr Orthoped, 34(2): 134-8 10.1097/BPO.0000000000000083, (2014).[8] Liu RW, Armstrong DG, Levine AD, Gilmore A, Thompson GH, Cooperman DR. "An Anatomic Study of the Distal Femoral Epiphysis", J Pediatr Orthoped, 33(7): 743-9 10.1097/BPO.0b013e31829d55bf, (2013).[9] Lombardo S, Harvey JJ. "Fractures of the distal femoral epiphyses. Factors influencing prognosis: a review of thirty-four cases", JBJS, 59(6): 742-51, (1977).[10] Beaty JH, Rockwood CA, Kasser JR. Rockwood and Wilkins' Fractures in Children: Wolters Kluwer/Lippincott, Williams & Wilkins, 2010.[11] JA. H. Lower extremity injuries. Tachdjian’s Pediatric Orthopaedics: USA: W.B. Saunders Company, 2002, p. 2327-34.[12] Garcés GL, Mugica-Garay I, López-González Coviella N, E G. "Growth-plate modifications after drilling", J Pediatr Orthop 14(2): 225-8, (1994).[13] Janarv P-M, Wikström B, Hirsch G. "The Influence of Transphyseal Drilling and Tendon Grafting on Bone Growth: An Experimental Study in the Rabbit", J Pediatr Orthoped, 18(2): 149-54, (1998).[14] Buch BD, Myerson MS. "Salter-Harris type IV epiphyseal fracture of the proximal phalanx of the great toe: a case report", Foot & ankle international, 16(4): 216-9, (1995).[15] Zionts. LE. Fractures and dislocations about the knee. Skeletal Trauma in Children: USA: Saunders, 2003, p. 443-9.[16] http://www.wheelessonline.com/. 2014.[17] Gok K, Inal S, Gok A, Pinar AM. "Biomechanical effects of three different configurations in Salter Harris type 3 distal femoral epiphyseal fractures", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(4): 1069-77, (2017).[18] Gok K, Inal S, Gok A, Pinar AM. "Biomechanical effects of three different configurations in Salter Harris type 3 distal femoral epiphyseal fractures", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 1-9, (2016).[19] Gok K. "Development of three-dimensional finite element model to calculate the turning processing parameters in turning operations", Measurement, 75(57-68, (2015).[20] Inal S, Taspinar F, Gulbandilar E, Gok K. "Comparison of the biomechanical effects of pertrochanteric fixator and dynamic hip screw on an intertrochanteric femoral fracture using the finite element method", The International Journal of Medical Robotics and Computer Assisted Surgery, 11(1): 95-103, (2015).[21] ERDEM M, GOK K, GOKCE B, GOK A. "NUMERICAL ANALYSIS OF TEMPERATURE, SCREWING MOMENT AND THRUST FORCE USING FINITE ELEMENT METHOD IN BONE SCREWING PROCESS", Journal of Mechanics in Medicine and Biology, 1750016, (2016).[22] Gok A, Inal S, Taspinar F, Gulbandilar E, Gok K. "Fatigue behaviors of different materials for schanz screws in femoral fracture model using finite element analysis", Optoelectroin and Adv Mater Rapid Commun, 8(5-6): 576-80, (2014).[23] Afsar E, Taspinar F, Calik BB, Ozkan Y, Gok K. "Use of the finite element analysis to determine stresses in the knee joints of osteoarthritis patients with different Q angles", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 1-7, (2016).[24] Gok K, Taspinar F, Inal S, Gulbandilar E. "IMPORTANCE OF SIDEBAR-BONE SPACING DURING THE APPLICATION OF PERTROCHANTERIC FIXATOR ON FEMORAL INTERTROCHANTERIC FRACTURE MODEL; COMPARISON OF THE BIOMECHANICAL EFFECTS USING FINITE ELEMENT METHOD", Biomedical Engineering: Applications, Basis and Communications, 27(03): 1550030, (2015).[25] Goffin JM, Pankaj P, Simpson AH. "The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: A subject-specific finite element study", J Orthopaed Res, 31(4): 596-600, (2013).[26] Atmaca H, Kesemenli C, Memişoğlu K, Özkan A, Celik Y. "Changes in the loading of tibial articular cartilage following medial meniscectomy: a finite element analysis study", Knee Surg Sports Traumatol Arthrosc, 21(12): 2667-73, (2013).[27] AnsysWorkbench. Material Library. 2014.[28] Yuan-Kun T, Yau-Chia L, Wen-Jen Y, et al. Temperature Rise Simulation During a Kirschner Pin Drilling in Bone. Bioinformatics and Biomedical Engineering , 2009 ICBBE 2009 3rd International Conference on2009, p. 1-4.[29] Peña E, Calvo B, Martínez MA, Palanca D, Doblaré M. "Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics", Clin Biomech, 20(5): 498-507, (2005).[30] Brown JH, DeLuca SA. "Growth plate injuries: Salter-Harris classification.", American Family Physician 46(4): 1180-4, (1992).[31] Eiff MP, Hatch R, Calmbach WL. Fracture Management for Primary Care: Saunders, 1998.[32] SEYHAN F, GÖKSAN SB. Çocuk Kırıkları. Ortopedik Travmatoloji: Nobel Tıp Kitabevleri 2002, p. 89-101.[33] Wall EJ, May MM. "Growth plate fractures of the distal femur", Journal of Pediatric Orthopaedics, 32(S40-S6, (2012).
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Kadir Gök 0000-0001-5736-1884

Sermet İnal This is me 0000-0001-5736-1884

Arif Gök 0000-0002-3309-6921

Publication Date March 1, 2020
Submission Date October 25, 2018
Published in Issue Year 2020

Cite

APA Gök, K., İnal, S., & Gök, A. (2020). Biomechanical Effects of Four Different Configurations In Salter Harris Type 4 Distal Femoral Epiphyseal Fractures. Politeknik Dergisi, 23(1), 151-159. https://doi.org/10.2339/politeknik.474787
AMA Gök K, İnal S, Gök A. Biomechanical Effects of Four Different Configurations In Salter Harris Type 4 Distal Femoral Epiphyseal Fractures. Politeknik Dergisi. March 2020;23(1):151-159. doi:10.2339/politeknik.474787
Chicago Gök, Kadir, Sermet İnal, and Arif Gök. “Biomechanical Effects of Four Different Configurations In Salter Harris Type 4 Distal Femoral Epiphyseal Fractures”. Politeknik Dergisi 23, no. 1 (March 2020): 151-59. https://doi.org/10.2339/politeknik.474787.
EndNote Gök K, İnal S, Gök A (March 1, 2020) Biomechanical Effects of Four Different Configurations In Salter Harris Type 4 Distal Femoral Epiphyseal Fractures. Politeknik Dergisi 23 1 151–159.
IEEE K. Gök, S. İnal, and A. Gök, “Biomechanical Effects of Four Different Configurations In Salter Harris Type 4 Distal Femoral Epiphyseal Fractures”, Politeknik Dergisi, vol. 23, no. 1, pp. 151–159, 2020, doi: 10.2339/politeknik.474787.
ISNAD Gök, Kadir et al. “Biomechanical Effects of Four Different Configurations In Salter Harris Type 4 Distal Femoral Epiphyseal Fractures”. Politeknik Dergisi 23/1 (March 2020), 151-159. https://doi.org/10.2339/politeknik.474787.
JAMA Gök K, İnal S, Gök A. Biomechanical Effects of Four Different Configurations In Salter Harris Type 4 Distal Femoral Epiphyseal Fractures. Politeknik Dergisi. 2020;23:151–159.
MLA Gök, Kadir et al. “Biomechanical Effects of Four Different Configurations In Salter Harris Type 4 Distal Femoral Epiphyseal Fractures”. Politeknik Dergisi, vol. 23, no. 1, 2020, pp. 151-9, doi:10.2339/politeknik.474787.
Vancouver Gök K, İnal S, Gök A. Biomechanical Effects of Four Different Configurations In Salter Harris Type 4 Distal Femoral Epiphyseal Fractures. Politeknik Dergisi. 2020;23(1):151-9.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.