Research Article
BibTex RIS Cite

LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi

Year 2022, , 1575 - 1585, 16.12.2022
https://doi.org/10.2339/politeknik.798394

Abstract

Bu çalışma; poliolefin plastik sınıfında en fazla atık hacmine sahip olan düşük yoğunluklu polietilen (LDPE) ve ambalajlamada sıkça kullanılan alüminyum içerikli kompozitlerinin (C/LDPE), katma değerli ürünler elde etmek için pirolizi ve elde edilen ürünlerin karakterizasyonunu içermektedir. LDPE ve C/LDPE atıkları, kısa analiz, elementel analiz ve TGA ile incelenmiş; ardından farklı sıcaklık (400-600-800 ℃) ve ısıtma hızlarında (5-10-20 ℃/dk) sabit yataklı reaktörde piroliz edilmiştir. Sonrasında atıklar, zeolit katalizörlüğünde 600 °C sıcaklık ve 20 °C/dk ısıtma hızında piroliz edilerek, katalizörün sıvı ürün üzerindeki etkisi değerlendirilmiştir. Elde edilen sıvı ürünün vaks olarak değerlendirilme potansiyelini belirlemek için, sıvı ürünlerin ve temin edilen ticari vaksların GC-MS, FT-IR ve 1H-NMR analizleri yapılmıştır. Sonuçlara göre, atık C/LDPE’den elde edilen ürün ticari ‘heavy wax’ ile benzerlik göstermektedir.

Supporting Institution

Eskişehir Teknik Üniversitesi, TÜBİTAK

Project Number

19ADP167, 117Y041

References

  • [1] Arabiourrutia, M., Elordi, G., Lopez, G., Borsella, E., Bilbao, J., & Olazar, M., ‘Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor’, J. Anal. Appl. Pyrolysis, 94: 230-237, (2012).
  • [2] Rodríguez, E., Palos, R., Gutiérrez, A., Trueba, D., Arandes, J. M., & Bilbao, J., ‘Towards waste refinery: Co-feeding HDPE pyrolysis waxes with VGO into the catalytic cracking unit’, Energy Convers. Manage., 207, 112554, (2020).
  • [3] Mukherjee, A., Ruj, B., Gupta, P., & Sadhukhan, A. K., ‘A study on pyrolysis of plastic wastes for product recovery and analysis’ Urban Mining and Sustainable Waste Management, Springer, Singapore, (2020).
  • [4] PAGEV, Türkiye Plastik Sektör İzleme Raporu 2020/3 (2020).
  • [5] Sogancioglu, M., Yel, E., & Ahmetli, G., ‘Pyrolysis of waste high density polyethylene (HDPE) and low density polyethylene (LDPE) plastics and production of epoxy composites with their pyrolysis chars’ J. Cleaner Prod., 165, 369-381, (2017).
  • [6] Muralisrinivasan Subramanian, N., ‘Plastics waste management: processing and disposal’ Shawbury, Shrewsbury, Shropshire, UK: Smithers Rapra, (2016).
  • [7] Park, J. J., Park, K., Park, J. W., & Kim, D. C., "Characteristics of LDPE pyrolysis", Korean J. Chem. Eng.,19(4), 658, (2002).
  • [8] Sharuddin S.D.A., Abnisa F., Daud W., Aroua M.K., ‘A Review On Pyrolysis Of Plastic Wastes’, Energy Convers. Manage., 115, 308–326, (2016).
  • [9] Oliveux, G., Dandy, L. O., & Leeke, G. A., ‘Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties’ Prog. Mater Sci., 72, 61-99, (2015).
  • [10] Dewangan, A., Pradhan, D., & Singh, R. K., ‘Co-pyrolysis of sugarcane bagasse and low-density polyethylene: influence of plastic on pyrolysis product yield’ Fuel, 185, 508-516, (2016).
  • [11] Zattini, G., Leonardi, C., Mazzocchetti, L., Cavazzoni, M., Montanari, I., Tosi, C., ... & Giorgini, L., ‘Pyrolysis of Low-Density Polyethylene’ In International Conference on Sustainable Design and Manufacturing (pp. 480-490). Springer, Cham. (2017).
  • [12] Papuga, S. V., Gvero, P. M., & Vukić, L. M., ‘Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor’ Thermal science, 20(2), 731-741, (2016).
  • [13] Sharuddin S.D.A., Abnisa F., Daud W., Aroua M.K., ‘A Review On Pyrolysis Of Plastic Wastes’, Energy Convers. Manage., 115, 308–326, (2016).
  • [14] Gao, F., ‘Pyrolysis of Waste Plastics into Fuels’, Yayımlanmamış Doktora Tezi. Canterbury: University of Canterbury, Chemical and Process Engineering. (2010).
  • [15] Shah, S. H., Khan, Z. M., Raja, I. A., Mahmood, Q., Bhatti, Z. A., Khan, J., ... & Wu, D.,’ Low temperature conversion of plastic waste into light hydrocarbons’ J. Hazard. Mater., 179(1-3), 15-20, (2010).
  • [16] Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S., ‘Catalytic pyrolysis of plastic waste: A review’, Process Saf. Environ. Prot., 102, 822-838, (2016).
  • [17] Jia, X., Qin, C., Friedberger, T., Guan, Z., & Huang, Z., ‘Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions’, Sci. Adv., 2(6), e1501591, (2016).
  • [18] Lasek, J., Hrycko, P., Wasielewski, R., Kopczyński, M., Bodora, K., Kaczmarzyk, G., & Adamczyk, M., ‘Combustion of micro wax from polyethylene pyrolysis’ Combust. Sci. Technol., 190(7), 1246-1258, (2018).
  • [19] Jixing, L. I., ‘Study on the conversion technology of waste polyethylene plastic to polyethylene wax’, Energy sources, 25(1), 77-82, (2003).
  • [20] Urbaniak, W., Wasiak, W., & Fall, J., ‘Waxes–products of thermal degradation of waste plastics–obtaining, capabilities, and application’, Archiwum Gospodarki Odpadami i Ochrony Środowiska, 6, 71-78, (2007).
  • [21] Dubdub, I., & Al-Yaari, M. ‘Pyrolysis of low density polyethylene: kinetic study using TGA data and ANN prediction’, Polym., 12(4), 891, (2020).
  • [22] Zheng, Y., Tao, L., Yang, X., Huang, Y., Liu, C., & Zheng, Z. ‘Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS’, J. Anal. Appl. Pyrolysis, 133, 185-197, (2018).
  • [23] Miskolczi, N., Bartha, L., & Deák, G. ‘Thermal degradation of polyethylene and polystyrene from the packaging industry over different catalysts into fuel-like feed stocks’ Polym. Degrad. Stab., 91(3), 517-526 (2006).
  • [24] Shah, J., Jan, M. R., Mabood, F., & Jabeen, F. ‘Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems’ Energy Convers. Manage., 51(12), 2791-2801, (2010).
  • [25] Li, C., Zhang, C., Gholizadeh, M., & Hu, X. ‘Different reaction behaviours of light or heavy density polyethylene during the pyrolysis with biochar as the catalyst’ J. Hazard. Mater., 399, 123075, (2020).
  • [26] Bagri, R., & Williams, P. T. ‘Catalytic pyrolysis of polyethylene’ J. Anal. Appl. Pyrolysis, 63(1), 29-41, (2002).
  • [27] Sharratt, P. N., Lin, Y. H., Garforth, A. A., & Dwyer, J. ‘Investigation of the catalytic pyrolysis of high-density polyethylene over a HZSM-5 catalyst in a laboratory fluidized-bed reactor’ Ind. Eng. Chem. Results, 36(12), 5118-5124, (1997).
  • [28] Aguado, J., Sotelo, J. L., Serrano, D. P., & Calles, J. A. ‘Catalytic conversion of polyolefins into liquid fuels over MCM-41: comparison with ZSM-5 and amorphous SiO {sub 2}-Al {sub 2} O {sub 3}’ Energy Fuels, 11, (1997).
  • [29] Ding, W., Liang, J., & Anderson, L. L. ‘Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste’ Fuel Process. Technol., 51(1-2), 47-62, (1997).
  • [30] R. T. Morrison; R. N. ‘Boyd Organic Chemistry’, 6th ed, New Jersey: P. H., (1992).
  • [31] Sawyer, C. N. Çevre mühendisliği ve bilimi için kimya. Nobel, (2013).
  • [32] Lee, M., Identifying an Unknown Compound by Infrared Spectroscopy. Chemical Education Resources (TECH 710), (1997).
  • [33] Aguado, J., Serrano, D. P., & Escola, J. M. Catalytic upgrading of plastic wastes. Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels, 73-110, (2006).

Effects of Different Parameters on Pyrolytic Liquid Product of Waste LDPE and C/LDPE Packages

Year 2022, , 1575 - 1585, 16.12.2022
https://doi.org/10.2339/politeknik.798394

Abstract

This study is about the thermal pyrolysis of low-density polyethylene (LDPE), which has the highest waste volume in the polyolefins plastic class, and aluminum-containing composites (C/LDPE), which are frequently used in packaging, to recover value-added products and then characterize the products obtained. LDPE and C/LDPE wastes were examined by proximate analysis, elemental analysis and TGA, and then pyrolyzed in a fixed bed reactor at different temperatures (400-600-800 ℃) and different heating rates (5-10-20 ℃/min). Afterwards, the wastes were pyrolyzed at 600 °C and 20 °C/min heating rate with zeolite catalysis and the effect of the catalyst on the liquid product was evaluated. GC-MS, FT-IR and 1H-NMR analyzes of the pyrolytic liquid products and commercial waxes were performed to determine the potential of the obtained liquid product to be used as a wax. According to the results, the product obtained from waste C/LDPE is similar to commercial heavy wax.

Project Number

19ADP167, 117Y041

References

  • [1] Arabiourrutia, M., Elordi, G., Lopez, G., Borsella, E., Bilbao, J., & Olazar, M., ‘Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor’, J. Anal. Appl. Pyrolysis, 94: 230-237, (2012).
  • [2] Rodríguez, E., Palos, R., Gutiérrez, A., Trueba, D., Arandes, J. M., & Bilbao, J., ‘Towards waste refinery: Co-feeding HDPE pyrolysis waxes with VGO into the catalytic cracking unit’, Energy Convers. Manage., 207, 112554, (2020).
  • [3] Mukherjee, A., Ruj, B., Gupta, P., & Sadhukhan, A. K., ‘A study on pyrolysis of plastic wastes for product recovery and analysis’ Urban Mining and Sustainable Waste Management, Springer, Singapore, (2020).
  • [4] PAGEV, Türkiye Plastik Sektör İzleme Raporu 2020/3 (2020).
  • [5] Sogancioglu, M., Yel, E., & Ahmetli, G., ‘Pyrolysis of waste high density polyethylene (HDPE) and low density polyethylene (LDPE) plastics and production of epoxy composites with their pyrolysis chars’ J. Cleaner Prod., 165, 369-381, (2017).
  • [6] Muralisrinivasan Subramanian, N., ‘Plastics waste management: processing and disposal’ Shawbury, Shrewsbury, Shropshire, UK: Smithers Rapra, (2016).
  • [7] Park, J. J., Park, K., Park, J. W., & Kim, D. C., "Characteristics of LDPE pyrolysis", Korean J. Chem. Eng.,19(4), 658, (2002).
  • [8] Sharuddin S.D.A., Abnisa F., Daud W., Aroua M.K., ‘A Review On Pyrolysis Of Plastic Wastes’, Energy Convers. Manage., 115, 308–326, (2016).
  • [9] Oliveux, G., Dandy, L. O., & Leeke, G. A., ‘Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties’ Prog. Mater Sci., 72, 61-99, (2015).
  • [10] Dewangan, A., Pradhan, D., & Singh, R. K., ‘Co-pyrolysis of sugarcane bagasse and low-density polyethylene: influence of plastic on pyrolysis product yield’ Fuel, 185, 508-516, (2016).
  • [11] Zattini, G., Leonardi, C., Mazzocchetti, L., Cavazzoni, M., Montanari, I., Tosi, C., ... & Giorgini, L., ‘Pyrolysis of Low-Density Polyethylene’ In International Conference on Sustainable Design and Manufacturing (pp. 480-490). Springer, Cham. (2017).
  • [12] Papuga, S. V., Gvero, P. M., & Vukić, L. M., ‘Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor’ Thermal science, 20(2), 731-741, (2016).
  • [13] Sharuddin S.D.A., Abnisa F., Daud W., Aroua M.K., ‘A Review On Pyrolysis Of Plastic Wastes’, Energy Convers. Manage., 115, 308–326, (2016).
  • [14] Gao, F., ‘Pyrolysis of Waste Plastics into Fuels’, Yayımlanmamış Doktora Tezi. Canterbury: University of Canterbury, Chemical and Process Engineering. (2010).
  • [15] Shah, S. H., Khan, Z. M., Raja, I. A., Mahmood, Q., Bhatti, Z. A., Khan, J., ... & Wu, D.,’ Low temperature conversion of plastic waste into light hydrocarbons’ J. Hazard. Mater., 179(1-3), 15-20, (2010).
  • [16] Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S., ‘Catalytic pyrolysis of plastic waste: A review’, Process Saf. Environ. Prot., 102, 822-838, (2016).
  • [17] Jia, X., Qin, C., Friedberger, T., Guan, Z., & Huang, Z., ‘Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions’, Sci. Adv., 2(6), e1501591, (2016).
  • [18] Lasek, J., Hrycko, P., Wasielewski, R., Kopczyński, M., Bodora, K., Kaczmarzyk, G., & Adamczyk, M., ‘Combustion of micro wax from polyethylene pyrolysis’ Combust. Sci. Technol., 190(7), 1246-1258, (2018).
  • [19] Jixing, L. I., ‘Study on the conversion technology of waste polyethylene plastic to polyethylene wax’, Energy sources, 25(1), 77-82, (2003).
  • [20] Urbaniak, W., Wasiak, W., & Fall, J., ‘Waxes–products of thermal degradation of waste plastics–obtaining, capabilities, and application’, Archiwum Gospodarki Odpadami i Ochrony Środowiska, 6, 71-78, (2007).
  • [21] Dubdub, I., & Al-Yaari, M. ‘Pyrolysis of low density polyethylene: kinetic study using TGA data and ANN prediction’, Polym., 12(4), 891, (2020).
  • [22] Zheng, Y., Tao, L., Yang, X., Huang, Y., Liu, C., & Zheng, Z. ‘Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS’, J. Anal. Appl. Pyrolysis, 133, 185-197, (2018).
  • [23] Miskolczi, N., Bartha, L., & Deák, G. ‘Thermal degradation of polyethylene and polystyrene from the packaging industry over different catalysts into fuel-like feed stocks’ Polym. Degrad. Stab., 91(3), 517-526 (2006).
  • [24] Shah, J., Jan, M. R., Mabood, F., & Jabeen, F. ‘Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems’ Energy Convers. Manage., 51(12), 2791-2801, (2010).
  • [25] Li, C., Zhang, C., Gholizadeh, M., & Hu, X. ‘Different reaction behaviours of light or heavy density polyethylene during the pyrolysis with biochar as the catalyst’ J. Hazard. Mater., 399, 123075, (2020).
  • [26] Bagri, R., & Williams, P. T. ‘Catalytic pyrolysis of polyethylene’ J. Anal. Appl. Pyrolysis, 63(1), 29-41, (2002).
  • [27] Sharratt, P. N., Lin, Y. H., Garforth, A. A., & Dwyer, J. ‘Investigation of the catalytic pyrolysis of high-density polyethylene over a HZSM-5 catalyst in a laboratory fluidized-bed reactor’ Ind. Eng. Chem. Results, 36(12), 5118-5124, (1997).
  • [28] Aguado, J., Sotelo, J. L., Serrano, D. P., & Calles, J. A. ‘Catalytic conversion of polyolefins into liquid fuels over MCM-41: comparison with ZSM-5 and amorphous SiO {sub 2}-Al {sub 2} O {sub 3}’ Energy Fuels, 11, (1997).
  • [29] Ding, W., Liang, J., & Anderson, L. L. ‘Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste’ Fuel Process. Technol., 51(1-2), 47-62, (1997).
  • [30] R. T. Morrison; R. N. ‘Boyd Organic Chemistry’, 6th ed, New Jersey: P. H., (1992).
  • [31] Sawyer, C. N. Çevre mühendisliği ve bilimi için kimya. Nobel, (2013).
  • [32] Lee, M., Identifying an Unknown Compound by Infrared Spectroscopy. Chemical Education Resources (TECH 710), (1997).
  • [33] Aguado, J., Serrano, D. P., & Escola, J. M. Catalytic upgrading of plastic wastes. Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels, 73-110, (2006).
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Ece Yapıcı 0000-0002-7502-4862

Hasret Akgün 0000-0002-2232-0713

Aysun Özkan 0000-0003-1036-7570

Zerrin Günkaya 0000-0002-7553-9129

Mufide Banar 0000-0003-2795-6208

Project Number 19ADP167, 117Y041
Publication Date December 16, 2022
Submission Date September 28, 2020
Published in Issue Year 2022

Cite

APA Yapıcı, E., Akgün, H., Özkan, A., Günkaya, Z., et al. (2022). LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi. Politeknik Dergisi, 25(4), 1575-1585. https://doi.org/10.2339/politeknik.798394
AMA Yapıcı E, Akgün H, Özkan A, Günkaya Z, Banar M. LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi. Politeknik Dergisi. December 2022;25(4):1575-1585. doi:10.2339/politeknik.798394
Chicago Yapıcı, Ece, Hasret Akgün, Aysun Özkan, Zerrin Günkaya, and Mufide Banar. “LDPE Ve C/LDPE Ambalaj Atıklarının Pirolizi Ve Farklı Parametrelerin Sıvı Ürüne Etkisi”. Politeknik Dergisi 25, no. 4 (December 2022): 1575-85. https://doi.org/10.2339/politeknik.798394.
EndNote Yapıcı E, Akgün H, Özkan A, Günkaya Z, Banar M (December 1, 2022) LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi. Politeknik Dergisi 25 4 1575–1585.
IEEE E. Yapıcı, H. Akgün, A. Özkan, Z. Günkaya, and M. Banar, “LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi”, Politeknik Dergisi, vol. 25, no. 4, pp. 1575–1585, 2022, doi: 10.2339/politeknik.798394.
ISNAD Yapıcı, Ece et al. “LDPE Ve C/LDPE Ambalaj Atıklarının Pirolizi Ve Farklı Parametrelerin Sıvı Ürüne Etkisi”. Politeknik Dergisi 25/4 (December 2022), 1575-1585. https://doi.org/10.2339/politeknik.798394.
JAMA Yapıcı E, Akgün H, Özkan A, Günkaya Z, Banar M. LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi. Politeknik Dergisi. 2022;25:1575–1585.
MLA Yapıcı, Ece et al. “LDPE Ve C/LDPE Ambalaj Atıklarının Pirolizi Ve Farklı Parametrelerin Sıvı Ürüne Etkisi”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1575-8, doi:10.2339/politeknik.798394.
Vancouver Yapıcı E, Akgün H, Özkan A, Günkaya Z, Banar M. LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi. Politeknik Dergisi. 2022;25(4):1575-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.