Review
BibTex RIS Cite

Impact of Dietary Factors on Obesity Management and Its Correlation with Hypothyroidism, Dyslipidaemia and Hormonal Imbalance

Year 2022, , 177 - 186, 31.08.2022
https://doi.org/10.25048/tudod.1027767

Abstract

Obesity is one of the major lifestyle disorders prevalent worldwide. The increasing obesity rate is associated with the emergence of
diseases like thyroid dysfunction, dyslipidaemia, hormonal imbalance, etc. Obesity is the risk factor for heart disease, atherosclerosis,
insulin resistance, arthritis, musculoskeletal disorders, and cancer.
The present article portrays insights into the association of obesity with dyslipidemia, diabetes, hormonal imbalance, and hypothyroidism.
Excessive or insufficient release of hormones can lead to obesity as leptin, insulin, sex hormones, and growth hormones influence
appetite, metabolism, and body fat distribution. The article provides a review of the interrelationship of metabolic dysregulation with
obesity and the further development of related diseases. This paper also summarizes the effects of dietary fibers and fish protein on
metabolic alterations, hormonal imbalance, and hyperlipidemia associated with obesity.
This article elaborated the role of dietary intervention like fiber and dietary protein consumption useful for managing obesity-related
disorders. Potential nutraceutical products are consumed as frequent food sources. Still, quality human clinical trial data are lacking,
signifying the need for substantial scientific work to assess the safety and efficacy of nutraceuticals.

Supporting Institution

RKDF University, Gandhi Nagar, Bhopal, M.P., India and People’s University, Bhanpur, Bhopal, M.P., India

Project Number

NA

References

  • 1. Obesity and overweight (Internet). World Health Organization; 2020 (updated 2021 June 9; cited 2021 Sept 5). Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
  • 2. Dochat C, Godfrey KM, Golshan S, Cuneo JG, Afari N. Dietary restraint and weight loss in relation to disinhibited eating in obese veterans following a behavioral weight loss intervention. Appetite. 2019;1(8):98-104.
  • 3. MI classification. Global database on body mass index (Internet). World Health Organization; 2012 (cited 2021 Sept 8). Available from: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi.
  • 4. Moghaddam SAP, Amiri P, Saeedpour A, Hosseinzadeh N, Abolhasani M, Ghorbani A. The prevalence of food addiction and its associations with plasma oxytocin level and anthropometric and dietary measurements in Iranian women with obesity. Peptides. 2019;122:170151. Doi: 10.1016/j.peptides.2019.170151.
  • 5. Klop B, Elte JWF, Castro CM. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients. 2013;5(4):1218-40.
  • 6. Klop B, Wouter Jukema J, Rabelink TJ, Castro Cabezas M. A physician's guide for the management of hypertriglyceridemia: the etiology of hypertriglyceridemia determines treatment strategy. Panminerva Med. 2012;54(2):91-103.
  • 7. Germinario R, Sniderman AD, Manuel S, Lefebvre SP, Baldo A, Cianflone K. Coordinate regulation of triacylglycerol synthesis and glucose transport by acylation-stimulating protein. Metabolism. 1993;42(5):574-80.
  • 8. Goldberg IJ, Eckel RH, Abumrad NA. Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways. J Lipid Res. 2009;50:86-90.
  • 9. Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116(16):1832-44.
  • 10. Karpe F, Olivecrona T, Walldius G, Hamsten A. Lipoprotein lipase in plasma after an oral fat load: relation to free fatty acids. J Lipid Res. 1992;33(7):975-84.
  • 11. Alipour A, Elte JW, van Zaanen HC, Rietveld AP, Castro Cabezas M. Novel aspects of postprandial lipemia in relation to atherosclerosis. Atheroscler Suppl. 2008;9(2):39-44.
  • 12. Deeb SS, Zambon A, Carr MC, Ayyobi AF, Brunzell JD. Hepatic lipase and dyslipidemia: interactions among genetic variants obesity, gender, and diet. J Lipid Res. 2003;44(7):1279-86.
  • 13. Zachary T, Bloomgarden MD. Prevention of diabetes and obesity. Diab Care. 2007;30(12):3145-51.
  • 14. Soodini GR, Hamdy O. Adiponectin and leptin in relation to insulin sensitivity. Metab Syndr Relat Disord. 2004;2(2):114-23.
  • 15. Raji A, Seely EW, Arky RA, Simonson DC. Body fat distribution and insulin resistance in healthy Asian Indians and Caucasians. J Clin Endocrinol Metab. 2001;86(11):5366-71.
  • 16. Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60(10):2441-9.
  • 17. Kahn S, Hull R, Utzschneider M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840-6.
  • 18. Jelic K. A cross-sectional analysis of NEFA levels following a standard mixed meal in a population of persons with newly diagnosed type 2 diabetes mellitus across a spectrum of glycemic control. In: DiabetesPro 67th Scientific Sessions (conference proceedings on the Internet); Alexandria: Egypt; (cited 2021 Sep 2). Abstract Number: 0898-P. Available from: https://professional.diabetes.org/abstract/cross-sectional-analysis-nefa-levels-following-standard-mixed-meal-population-persons-newly.
  • 19. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145(5):2273-82.
  • 20. Sheth J, Shah A, Sheth F. The association of dyslipidemia and obesity with glycated haemoglobin. Clin Diab Endocrinol. 2015;1:6.
  • 21. Ogier V, Ziegler O, Mejean L, Nicolas JP, Stricker-Krongrad A. Obesity is associated with decreasing levels of the circulating soluble leptin receptor in humans. Int J Obes Relat Metab Disord. 2002;26:496-503.
  • 22. Holm JC, Gamborg M, Ward LC, Gammel toft S, Kaas-Ibsen K, Heitmann BL, et al. Tracking of leptin, soluble leptin receptor, and the free leptin index during weight loss and regain in children. Obes Facts. 2011;4(5):461-8.
  • 23. Filho G, Mastronardi C, Wong ML, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Ind J Endocrinol Metab. 2012;16(S):549-55.
  • 24. Hausman GJ, Barb CR, Lents CA. Leptin and reproductive function. Biochimie. 2012;94:2075-81.
  • 25. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116:1784-92.
  • 26. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003;46:459-69.
  • 27. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab. 2001;86:3815-19.
  • 28. Watanabe T, Watanabe-Kominato K, Takahashi Y, Kojima M, Watanabe R. Adipose tissue-derived omentin-1 function and regulation. Compr Physiol. 2017;7:765-81.
  • 29. Berryman DE, Glad CA, List EO, Johannsson G. The GH/IGF-1 axis in obesity: Pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2017;9:346-56.
  • 30. Bjorntorp P, Rosmond R. Neuroendocrine abnormalities in visceral obesity. Int J Obes Relat Metab Disord. 2002;2(S):80-5.
  • 31. Purnell JQ, Kahn SE, Samuels MH, Brandon D, Loriaux DL, Brunzell JD. Enhanced cortisol production rates, free cortisol, and 11beta-HSD-1 expression correlate with visceral fat and insulin resistance in men: effect of weight loss. Am J Physiol Endocrinol Metab. 2009;296E:351-7.
  • 32. Hirata A, Maeda N, Nakatsuji H, Hiuge-Shimizu A, Okada T, Funahashi T, et al. Contribution of glucocorticoid-mineralocorticoid receptor pathway on the obesity-related adipocyte dysfunction. Biochem Biophys Res Commun. 2012;419:182-7.
  • 33. Pasquali R. Obesity and androgens: facts and perspectives. Fertil Steril. 2006;85(5):1319-40.
  • 34. Saboor ASA, Kumar S, Barber TM. The role of obesity and type 2 diabetes mellitus in the development of male obesity-associated secondary hypogonadism. Clin Endocrinol (Oxf). 2013;78:330-7.
  • 35. Wagner IV, Kloting N, Atanassova N, Savchuk I, Sprote C, Kiess W, et al. Prepubertal onset of obesity negatively impacts on testicular steroidogenesis in rats. Mol Cell Endocrinol. 2016:437:154-62.
  • 36. Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf). 2005;63:280-93.
  • 37. Segall-Gutierrez P, Du J, Niu C, Ge M, Tilley I, Mizraji K, et al. Effect of subcutaneous depot-medroxyprogesterone acetate (DMPA-SC) on serum androgen markers in normal-weight, obese, and extremely obese women. Contraception. 2012;86:739-45.
  • 38. Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev. 2003;24:668-93.
  • 39. Stockl D, Doring A, Peters A, Thorand B, Heier M, Huth C, et al. Age at menarche is associated with prediabetes and diabetes in women (aged 32-81 years) from the general population: the KORA F4 Study. Diabetologia. 2012;55:681-8.
  • 40. Ghizzoni L, Barreca A, Mastorakos G, Furlini M, Vottero A, Ferrari B, et al. Leptin inhibits steroid biosynthesis by human granulosa-lutein cells. Horm Metab Res. 2001;33:323-8.
  • 41. Rizk NM, Sharif E. Leptin as well as free leptin receptor is associated with polycystic ovary syndrome in young women. Int J Endocrinol. 2015; Article ID 927805. Doi:10.1155/2015/927805.
  • 42. Schneider G, Kirschner MA, Berkowitz R, Ertel NH. Increased estrogen production in obese men. J Clin Endocrinol Metab. 1979;48:633-8.
  • 43. Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 2013;34:309-38.
  • 44. Belanger C, Luu-The V, Dupont P, Tchernof A. Adipose tissue intracrinology: potential importance of local androgen/estrogen metabolism in the regulation of adiposity. Horm Metab Res. 2002;34:737-45.
  • 45. De Pergola G, Ciampolillo A, Paolotti S, Trerotoli P, Giorgino R. Free triiodothyronine and thyroid stimulating hormone are directly associated with waist circumference, independently of insulin resistance, metabolic parameters and blood pressure in overweight and obese women. Clin Endocrinol. 2007;67:265-9.
  • 46. Venditti P, Chiellini G, Bari A, Di Stefano L, Zucchi R, Columbano A, et al. T3 and the thyroid hormone beta-receptor agonist GC-1 differentially affect metabolic capacity and oxidative damage in rat tissues. J Exp Biol. 2009;212:986-93.
  • 47. Strata A, Ugoloti G, Contini C. Thyroid and obesity: Survey of some function tests in a large obese population. Int J Obes. 1978;2:333-40.
  • 48. Kaur G, Mukundan S, Wani V, Kumar MS. Nutraceuticals in the management and prevention of metabolic syndrome. Austin J Pharmacol Ther. 2015;3(1):1063.
  • 49. Welty FK. Cardiovascular disease and dyslipidemia in women. Arch Intern Med. 2001;161(4):514-22.
  • 50. Klop B, Castro Cabezas M. Chylomicrons: A key biomarker and risk factor for cardiovascular disease and for the understanding of obesity. Curr Cardiovasc Risk Rep. 2012;6:27-34.
  • 51. Thomas TR, Horner KE, Langdon MM, Zhang JQ, Krul ES, Sun GY, et al. Effect of exercise and medium-chain fatty acids on postprandial lipemia. J Appl Physiol. 2001;90:1239-46.
  • 52. DiPietro L, Stachenfeld NS. Exercise treatment of obesity. In: Feingold KR, Anawalt B, Boyce A, et al. (ed) Endotext. South Dartmouth (MA): MDText.com, Inc; 2017.
  • 53. Lopez-Miranda J, Williams C, Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr. 2007;98:458-73.
  • 54. Schwingshackl L, Hoffmann G. Comparison of effects of long-term low-fat vs high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-analysis. J Acad Nutr Diet. 2013;113(12):1640-61.
  • 55. Hu T. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol. 2012;176(7)S:44-54.
  • 56. Song R, Wang B, Yao Q, Li Q, Jia X, Zhang J. The Impact of obesity on thyroid autoimmunity and dysfunction: A systematic review and meta-analysis. Front Immunol. 2019; Doi:10.3389/fimmu.2019.02349.
  • 57. Wycherley TP. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;96(6):1281-98.
  • 58. Slavin JL. Dietary fiber and body weight. Nutrition. 2015; 21:411-8.
  • 59. Suleria HAR, Osborne S, Masci P. Marine-based nutraceuticals: An innovative trend in the food and supplement industries. Mar Drugs. 2015;13(10):6336-51.
  • 60. Datta S. Value added fish products. In: Mahapatra BK, Pailan GH, Datta S, Sardar P, Munilkumar S (ed), Fish Processing and Value Added Fish Products, 3rd ed. Mumbai, India: Central Institute of Fisheries Education; 2013.
  • 61. Erdmann K, Cheung BWY, Schroder H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem. 2008;19(10):643-54.
  • 62. Hou Y, Wu Z, Dai Z, Wang G, Wu G. Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. J Animal Sci Biotechnol. 2017;8:24. Doi:10.1186/s40104-017-0153-9.

Beslenme Faktörlerinin Obeziteye Bağlı Komplikasyonlar Üzerindeki Etkisi: Hipotiroidizm, Dislipidemi ve Hormonal Dengesizlik

Year 2022, , 177 - 186, 31.08.2022
https://doi.org/10.25048/tudod.1027767

Abstract

Obezite, dünya çapında yaygın olan en önemli yaşam tarzı bozukluklarından biridir. Artan obezite oranı, tiroid disfonksiyonu,
dislipidemi, hormonal dengesizlik vb. hastalıkların ortaya çıkması ile ilişkilidir. Obezite, kalp hastalığı, ateroskleroz, insülin direnci,
artrit, kas-iskelet sistemi bozuklukları ve kanser için risk faktörüdür.
Bu makale, obezitenin dislipidemi, diyabet, hormonal dengesizlik ve hipotiroidizm ile ilişkisine dair içgörüler sunmaktadır. Leptin,
insülin, seks hormonları ve büyüme hormonları iştahı, metabolizmayı ve vücut yağ dağılımını etkilediğinden hormonların aşırı veya
yetersiz salınımı obeziteye yol açabilir. Makale, metabolik düzensizliğin obezite ile ilişkisi ve ilgili hastalıkların daha da geliştirilmesi
hakkında bir inceleme sunmaktadır. Bu makale aynı zamanda diyet liflerinin ve balık proteininin metabolik değişiklikler, hormonal
dengesizlik ve obezite ile ilişkili hiperlipidemi üzerindeki etkilerini de özetlemektedir.
Bu makale, obezite ile ilgili bozuklukları yönetmek için yararlı olan lif ve diyet protein tüketimi gibi diyet müdahalesinin rolünü
detaylandırdı. Potansiyel nutrasötik ürünler sık besin kaynakları olarak tüketilmektedir. Yine de, kaliteli insan klinik deney verileri
eksiktir, bu da nutrasötiklerin güvenliğini ve etkinliğini değerlendirmek için önemli bilimsel çalışmalara ihtiyaç olduğunu gösterir.

Project Number

NA

References

  • 1. Obesity and overweight (Internet). World Health Organization; 2020 (updated 2021 June 9; cited 2021 Sept 5). Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
  • 2. Dochat C, Godfrey KM, Golshan S, Cuneo JG, Afari N. Dietary restraint and weight loss in relation to disinhibited eating in obese veterans following a behavioral weight loss intervention. Appetite. 2019;1(8):98-104.
  • 3. MI classification. Global database on body mass index (Internet). World Health Organization; 2012 (cited 2021 Sept 8). Available from: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi.
  • 4. Moghaddam SAP, Amiri P, Saeedpour A, Hosseinzadeh N, Abolhasani M, Ghorbani A. The prevalence of food addiction and its associations with plasma oxytocin level and anthropometric and dietary measurements in Iranian women with obesity. Peptides. 2019;122:170151. Doi: 10.1016/j.peptides.2019.170151.
  • 5. Klop B, Elte JWF, Castro CM. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients. 2013;5(4):1218-40.
  • 6. Klop B, Wouter Jukema J, Rabelink TJ, Castro Cabezas M. A physician's guide for the management of hypertriglyceridemia: the etiology of hypertriglyceridemia determines treatment strategy. Panminerva Med. 2012;54(2):91-103.
  • 7. Germinario R, Sniderman AD, Manuel S, Lefebvre SP, Baldo A, Cianflone K. Coordinate regulation of triacylglycerol synthesis and glucose transport by acylation-stimulating protein. Metabolism. 1993;42(5):574-80.
  • 8. Goldberg IJ, Eckel RH, Abumrad NA. Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways. J Lipid Res. 2009;50:86-90.
  • 9. Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116(16):1832-44.
  • 10. Karpe F, Olivecrona T, Walldius G, Hamsten A. Lipoprotein lipase in plasma after an oral fat load: relation to free fatty acids. J Lipid Res. 1992;33(7):975-84.
  • 11. Alipour A, Elte JW, van Zaanen HC, Rietveld AP, Castro Cabezas M. Novel aspects of postprandial lipemia in relation to atherosclerosis. Atheroscler Suppl. 2008;9(2):39-44.
  • 12. Deeb SS, Zambon A, Carr MC, Ayyobi AF, Brunzell JD. Hepatic lipase and dyslipidemia: interactions among genetic variants obesity, gender, and diet. J Lipid Res. 2003;44(7):1279-86.
  • 13. Zachary T, Bloomgarden MD. Prevention of diabetes and obesity. Diab Care. 2007;30(12):3145-51.
  • 14. Soodini GR, Hamdy O. Adiponectin and leptin in relation to insulin sensitivity. Metab Syndr Relat Disord. 2004;2(2):114-23.
  • 15. Raji A, Seely EW, Arky RA, Simonson DC. Body fat distribution and insulin resistance in healthy Asian Indians and Caucasians. J Clin Endocrinol Metab. 2001;86(11):5366-71.
  • 16. Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60(10):2441-9.
  • 17. Kahn S, Hull R, Utzschneider M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840-6.
  • 18. Jelic K. A cross-sectional analysis of NEFA levels following a standard mixed meal in a population of persons with newly diagnosed type 2 diabetes mellitus across a spectrum of glycemic control. In: DiabetesPro 67th Scientific Sessions (conference proceedings on the Internet); Alexandria: Egypt; (cited 2021 Sep 2). Abstract Number: 0898-P. Available from: https://professional.diabetes.org/abstract/cross-sectional-analysis-nefa-levels-following-standard-mixed-meal-population-persons-newly.
  • 19. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145(5):2273-82.
  • 20. Sheth J, Shah A, Sheth F. The association of dyslipidemia and obesity with glycated haemoglobin. Clin Diab Endocrinol. 2015;1:6.
  • 21. Ogier V, Ziegler O, Mejean L, Nicolas JP, Stricker-Krongrad A. Obesity is associated with decreasing levels of the circulating soluble leptin receptor in humans. Int J Obes Relat Metab Disord. 2002;26:496-503.
  • 22. Holm JC, Gamborg M, Ward LC, Gammel toft S, Kaas-Ibsen K, Heitmann BL, et al. Tracking of leptin, soluble leptin receptor, and the free leptin index during weight loss and regain in children. Obes Facts. 2011;4(5):461-8.
  • 23. Filho G, Mastronardi C, Wong ML, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Ind J Endocrinol Metab. 2012;16(S):549-55.
  • 24. Hausman GJ, Barb CR, Lents CA. Leptin and reproductive function. Biochimie. 2012;94:2075-81.
  • 25. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116:1784-92.
  • 26. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003;46:459-69.
  • 27. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab. 2001;86:3815-19.
  • 28. Watanabe T, Watanabe-Kominato K, Takahashi Y, Kojima M, Watanabe R. Adipose tissue-derived omentin-1 function and regulation. Compr Physiol. 2017;7:765-81.
  • 29. Berryman DE, Glad CA, List EO, Johannsson G. The GH/IGF-1 axis in obesity: Pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2017;9:346-56.
  • 30. Bjorntorp P, Rosmond R. Neuroendocrine abnormalities in visceral obesity. Int J Obes Relat Metab Disord. 2002;2(S):80-5.
  • 31. Purnell JQ, Kahn SE, Samuels MH, Brandon D, Loriaux DL, Brunzell JD. Enhanced cortisol production rates, free cortisol, and 11beta-HSD-1 expression correlate with visceral fat and insulin resistance in men: effect of weight loss. Am J Physiol Endocrinol Metab. 2009;296E:351-7.
  • 32. Hirata A, Maeda N, Nakatsuji H, Hiuge-Shimizu A, Okada T, Funahashi T, et al. Contribution of glucocorticoid-mineralocorticoid receptor pathway on the obesity-related adipocyte dysfunction. Biochem Biophys Res Commun. 2012;419:182-7.
  • 33. Pasquali R. Obesity and androgens: facts and perspectives. Fertil Steril. 2006;85(5):1319-40.
  • 34. Saboor ASA, Kumar S, Barber TM. The role of obesity and type 2 diabetes mellitus in the development of male obesity-associated secondary hypogonadism. Clin Endocrinol (Oxf). 2013;78:330-7.
  • 35. Wagner IV, Kloting N, Atanassova N, Savchuk I, Sprote C, Kiess W, et al. Prepubertal onset of obesity negatively impacts on testicular steroidogenesis in rats. Mol Cell Endocrinol. 2016:437:154-62.
  • 36. Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf). 2005;63:280-93.
  • 37. Segall-Gutierrez P, Du J, Niu C, Ge M, Tilley I, Mizraji K, et al. Effect of subcutaneous depot-medroxyprogesterone acetate (DMPA-SC) on serum androgen markers in normal-weight, obese, and extremely obese women. Contraception. 2012;86:739-45.
  • 38. Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev. 2003;24:668-93.
  • 39. Stockl D, Doring A, Peters A, Thorand B, Heier M, Huth C, et al. Age at menarche is associated with prediabetes and diabetes in women (aged 32-81 years) from the general population: the KORA F4 Study. Diabetologia. 2012;55:681-8.
  • 40. Ghizzoni L, Barreca A, Mastorakos G, Furlini M, Vottero A, Ferrari B, et al. Leptin inhibits steroid biosynthesis by human granulosa-lutein cells. Horm Metab Res. 2001;33:323-8.
  • 41. Rizk NM, Sharif E. Leptin as well as free leptin receptor is associated with polycystic ovary syndrome in young women. Int J Endocrinol. 2015; Article ID 927805. Doi:10.1155/2015/927805.
  • 42. Schneider G, Kirschner MA, Berkowitz R, Ertel NH. Increased estrogen production in obese men. J Clin Endocrinol Metab. 1979;48:633-8.
  • 43. Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 2013;34:309-38.
  • 44. Belanger C, Luu-The V, Dupont P, Tchernof A. Adipose tissue intracrinology: potential importance of local androgen/estrogen metabolism in the regulation of adiposity. Horm Metab Res. 2002;34:737-45.
  • 45. De Pergola G, Ciampolillo A, Paolotti S, Trerotoli P, Giorgino R. Free triiodothyronine and thyroid stimulating hormone are directly associated with waist circumference, independently of insulin resistance, metabolic parameters and blood pressure in overweight and obese women. Clin Endocrinol. 2007;67:265-9.
  • 46. Venditti P, Chiellini G, Bari A, Di Stefano L, Zucchi R, Columbano A, et al. T3 and the thyroid hormone beta-receptor agonist GC-1 differentially affect metabolic capacity and oxidative damage in rat tissues. J Exp Biol. 2009;212:986-93.
  • 47. Strata A, Ugoloti G, Contini C. Thyroid and obesity: Survey of some function tests in a large obese population. Int J Obes. 1978;2:333-40.
  • 48. Kaur G, Mukundan S, Wani V, Kumar MS. Nutraceuticals in the management and prevention of metabolic syndrome. Austin J Pharmacol Ther. 2015;3(1):1063.
  • 49. Welty FK. Cardiovascular disease and dyslipidemia in women. Arch Intern Med. 2001;161(4):514-22.
  • 50. Klop B, Castro Cabezas M. Chylomicrons: A key biomarker and risk factor for cardiovascular disease and for the understanding of obesity. Curr Cardiovasc Risk Rep. 2012;6:27-34.
  • 51. Thomas TR, Horner KE, Langdon MM, Zhang JQ, Krul ES, Sun GY, et al. Effect of exercise and medium-chain fatty acids on postprandial lipemia. J Appl Physiol. 2001;90:1239-46.
  • 52. DiPietro L, Stachenfeld NS. Exercise treatment of obesity. In: Feingold KR, Anawalt B, Boyce A, et al. (ed) Endotext. South Dartmouth (MA): MDText.com, Inc; 2017.
  • 53. Lopez-Miranda J, Williams C, Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr. 2007;98:458-73.
  • 54. Schwingshackl L, Hoffmann G. Comparison of effects of long-term low-fat vs high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-analysis. J Acad Nutr Diet. 2013;113(12):1640-61.
  • 55. Hu T. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol. 2012;176(7)S:44-54.
  • 56. Song R, Wang B, Yao Q, Li Q, Jia X, Zhang J. The Impact of obesity on thyroid autoimmunity and dysfunction: A systematic review and meta-analysis. Front Immunol. 2019; Doi:10.3389/fimmu.2019.02349.
  • 57. Wycherley TP. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;96(6):1281-98.
  • 58. Slavin JL. Dietary fiber and body weight. Nutrition. 2015; 21:411-8.
  • 59. Suleria HAR, Osborne S, Masci P. Marine-based nutraceuticals: An innovative trend in the food and supplement industries. Mar Drugs. 2015;13(10):6336-51.
  • 60. Datta S. Value added fish products. In: Mahapatra BK, Pailan GH, Datta S, Sardar P, Munilkumar S (ed), Fish Processing and Value Added Fish Products, 3rd ed. Mumbai, India: Central Institute of Fisheries Education; 2013.
  • 61. Erdmann K, Cheung BWY, Schroder H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem. 2008;19(10):643-54.
  • 62. Hou Y, Wu Z, Dai Z, Wang G, Wu G. Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. J Animal Sci Biotechnol. 2017;8:24. Doi:10.1186/s40104-017-0153-9.
There are 62 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Collection
Authors

Ankita Awasthı This is me 0000-0002-7102-2181

Papiya Bigoniya 0000-0001-8673-2736

Bhaskar Gupta This is me 0000-0002-1329-674X

Project Number NA
Publication Date August 31, 2022
Acceptance Date August 6, 2022
Published in Issue Year 2022

Cite

APA Awasthı, A., Bigoniya, P., & Gupta, B. (2022). Impact of Dietary Factors on Obesity Management and Its Correlation with Hypothyroidism, Dyslipidaemia and Hormonal Imbalance. Türkiye Diyabet Ve Obezite Dergisi, 6(2), 177-186. https://doi.org/10.25048/tudod.1027767
AMA Awasthı A, Bigoniya P, Gupta B. Impact of Dietary Factors on Obesity Management and Its Correlation with Hypothyroidism, Dyslipidaemia and Hormonal Imbalance. Turk J Diab Obes. August 2022;6(2):177-186. doi:10.25048/tudod.1027767
Chicago Awasthı, Ankita, Papiya Bigoniya, and Bhaskar Gupta. “Impact of Dietary Factors on Obesity Management and Its Correlation With Hypothyroidism, Dyslipidaemia and Hormonal Imbalance”. Türkiye Diyabet Ve Obezite Dergisi 6, no. 2 (August 2022): 177-86. https://doi.org/10.25048/tudod.1027767.
EndNote Awasthı A, Bigoniya P, Gupta B (August 1, 2022) Impact of Dietary Factors on Obesity Management and Its Correlation with Hypothyroidism, Dyslipidaemia and Hormonal Imbalance. Türkiye Diyabet ve Obezite Dergisi 6 2 177–186.
IEEE A. Awasthı, P. Bigoniya, and B. Gupta, “Impact of Dietary Factors on Obesity Management and Its Correlation with Hypothyroidism, Dyslipidaemia and Hormonal Imbalance”, Turk J Diab Obes, vol. 6, no. 2, pp. 177–186, 2022, doi: 10.25048/tudod.1027767.
ISNAD Awasthı, Ankita et al. “Impact of Dietary Factors on Obesity Management and Its Correlation With Hypothyroidism, Dyslipidaemia and Hormonal Imbalance”. Türkiye Diyabet ve Obezite Dergisi 6/2 (August 2022), 177-186. https://doi.org/10.25048/tudod.1027767.
JAMA Awasthı A, Bigoniya P, Gupta B. Impact of Dietary Factors on Obesity Management and Its Correlation with Hypothyroidism, Dyslipidaemia and Hormonal Imbalance. Turk J Diab Obes. 2022;6:177–186.
MLA Awasthı, Ankita et al. “Impact of Dietary Factors on Obesity Management and Its Correlation With Hypothyroidism, Dyslipidaemia and Hormonal Imbalance”. Türkiye Diyabet Ve Obezite Dergisi, vol. 6, no. 2, 2022, pp. 177-86, doi:10.25048/tudod.1027767.
Vancouver Awasthı A, Bigoniya P, Gupta B. Impact of Dietary Factors on Obesity Management and Its Correlation with Hypothyroidism, Dyslipidaemia and Hormonal Imbalance. Turk J Diab Obes. 2022;6(2):177-86.

Zonguldak Bülent Ecevit Üniversitesi Obezite ve Diyabet Uygulama ve Araştırma Merkezi’nin bilimsel yayım organıdır.

Web: https://obdm.beun.edu.tr/  Twitter: https://twitter.com/obezite_diyabet     Instagram: https://www.instagram.com/zbeuobezitediyabet/