Araştırma Makalesi
BibTex RIS Kaynak Göster

Reservoir Effect on the Hybrid Solar-Hydroelectric (SHE) System

Yıl 2023, Cilt: 26 Sayı: 4, 1505 - 1515, 01.12.2023
https://doi.org/10.2339/politeknik.1074180

Öz

The solar-hydroelectric (SHE) energy system is a renewable hybrid energy system consisting of solar and hydroelectric energy. An optimization algorithm has been designed to work out the installed power size of the SHE hybrid system, which is planned to be integrated into the existing hydroelectric power systems. This designed algorithm provides the optimum installed power with the benefit/cost approach. The value of the hydro cost and also the energy generation is taken from the actual values since it's an existing facility, and also the electricity production and price of the solar power are obtained from the algorithm that works iteratively. This study aims to indicate that more electricity will be produced by regulating water flows due to the reservoir of hydroelectric power plants. Hydro energy enables energy management to be administrated more effectively with the reservoir, which could be a natural enclosure, without using the other energy storage equipment/method. As a result of the study, it's been shown that with the regulation of the hydro facility flows with a reservoir, 180% more solar power capacity installation with 20.9 MW installed power and 12% more electricity production with 75.3 GWh electricity production is provided compared to the unregulated situation.

Kaynakça

  • [1] IHA, 2019 Hydropower Status Report Sector Trends and Insights, International Hydropower Association, IHA Central Office, London, (2020)
  • [2] TEİAŞ, Üretim Kapasite Projeksiyonu 2020-2024, Genel Müdürlüğü, Planlama ve Yatırım Yönetimi Dairesi Başkanlığı, Ankara, (2020)
  • [3] IPCC, Renewable Energy Sources and Climate Change Mitigation, Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, USA, ISBN: 978-1 107-02340-6, (2012)
  • [4] Kougias I., Bodis K., Waldou A. J., Ferrario F. M. and Szabo S., “Exploiting existing dams for solar PV system installations”, Progress in Photovoltaics: Research and Applications, 24: 229-239, (2016)
  • [5] Gisbert C. F., Gozalvez J. J. F., Santafe M. R., Gisbert P. F., Romero F. J. S. and Soler J. B. T., “A new photovoltaic floating cover system for water reservoirs”, Renewable Energy, 60: 63-70, (2013)
  • [6] Sairam P. M. N. and Aravindhan A., “Canal top solar panels: A unique nexus of energy, water and land”, Materialstoday: Proceedings, 33:705-710, (2020)
  • [7] Mittal D., Saxena B. K. and Rao K. V. S. , “Floating solar photovoltaic systems: An overview and their feasibility at Kota in Rajasthan”, 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Kollam, India, 1-7, (2017).
  • [8] Sahu A., Yadav N. and Sudhakar K., “Floating photovoltaic power plant: A review”, Renewable and Sustainable Energy Reviews, 66: 815-824, (2016)
  • [9] Lee N., Grunwald U., Rosenlieb E., Mirletz H., Aznar A., Spencer R. and Cox S., “Hybrid floating photovoltaics-hydropower systems: Benefits and global assesment of technical potential”, Renewable Energy, 162: 1415-1427, (2020).
  • [10] Fereshtehpour M., Sabbaghian R. J., Farrokhi A., Jovein E. B. and Sarindizaj E. E., “Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures”, Renewable Energy, 171: 1171-1187, (2021).
  • [11] Özden S., Dursun M., Aksöz A. and Saygın A., “Prediction and Modelling of energy consumption on temperature control for greenhouses”, Journal of Polytechnic, 22: 213-217, (2019).
  • [12] Kumar M., Chandel S. S. and Kumar A., “Performance analysis of a 10 MWp utility scale-grid connected canal-top photovoltaic power plant under Indian climatic conditions”, Energy, 204: (117903), (2020).
  • [13] Koç İ. and Başaran K., “Performance analysis of a PV/T based system by using Matlab/Simulink”, Journal of Polytechnic, 22: 229-236, (2019).
  • [14] Kapoor M. and Garg R. D., “Solar potential assessment over canal-top using geospatial techniques”, Arabian Journal of Geosciences, 14: (14), (2021).
  • [15] Yenioğlu Z. A. and Ateş V., “Evaluation of relative efficiency using renewable energy by data envelopment analysis: Turkey and seven European countries example”, Journal of Polytechnic, 22: 863-869, (2019).
  • [16] Kumar M. and Kumar A., “Experimental validation of performance and degredation study of canal-top photovoltaic system”, Applied Energy, 243: 102-118, (2019).
  • [17] Kumar M. and Kumar A., “Performance assessment of different photovoltaic technologies for canal-top and reservoir applications in subtrophical humid climate”, IEEE Journal of Photovoltaics, 9: 722-732, (2019).
  • [18] Javaid F. and Islam Z., “Proposed location and proposal for canal top solar PV plant”, 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria, 2020 (20279210), (2020).
  • [19] Sharma P., Muni B. and Sen D., “Design parameters of 10 kW floating solar power plant”, International Advanced Research Journal in Science, Engineering and Technology (IARJSET), 2: 85-89, (2015)
  • [20] Farfar J. and Breyer C., “Combining floating solar photovoltaic power plants and hydropower reservoirs: A virtual battery of great global potential”, Energy Procedia, 155: 403-411, (2018).
  • [21] Sanchez R. G., Kougias I., Girona M. M., Fahl F. and Waldau A. J., “Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa”, Renewable Energy, 169: 687-699, (2021).
  • [22] Selamoğulları U. S., “Analysis of a power inverter design considering the demand characteristics of a house with renewable energy sources”, Journal of Polytechnic, 23: 257-265, (2020).
  • [23] Patil (Desai) S. S., Wagh M. M. and Shinde N. N., “A review on floating solar photovoltaic power plants”, International Journal of Scientific & Engineering Research, 8: 789-794, (2017).
  • [24] Rahman W., Mahmud S., Ahmed R., Rahman S. and Arif Z., “Solar lanes and floating solar pv: new possibilities for source of energy generation in Bangladesh”, International conference on innovations in power and advanced computing technologies (i-PACT2017), Vellore, India, 1-6, (2017).
  • [25] Erol H. and Ayasun S., “Time delay margins computation for stability of hybrid power systems”, Journal of Polytechnic, 23: 1131-1139, (2020).
  • [26] Sahu A. K. and Sudhakar K., “Effect of UV exposure on bimodal HDPE floats for floating solar application”, Journal of Materials Research and Technology, 8: 147-156, (2019).
  • [27] Jamalludin M. A. S., Sukki F. M., Abu-Bakar S. H., Ramlee F., Munir A. B., Bani N. A., Muhtazaruddin M. N., Mas’ud A. A., Alfredo J., Rey A., Ayub A. S. and Sellami N., “Potential of floating solar technology in Malaysia”, International Journal of Power Electronics and Drive System (IJPEDS), 10: 1638-1644, (2019).
  • [28] Golroodbari S. Z. M., Vaartjes D. F., Meit J. B. L., van Hoeken A. P., Eberveld M., Jonker H. and van Sark W. G. J. H. M., “Pooling the cable: A techno-economic feasibility study of integrating offshore floating photovoltaic solar technology within an offshore wind park”, Solar Energy, 219: 65-74, (2021).
  • [29] Özcan E., Gür Ş. and Eren T., “A hybrid model to optimize the maintenance policies in the hydroelectric power plants”, Journal of Polytechnic, 24: 75-86, (2021).
  • [30] Solomin E., Sirotkin E., Cuce E., Selvanathan S. P. and Kumarasamy S., “Hybrid floating solar plant designs: a review”, Energies, 14: 1-25, (2021).
  • [31] Gull H. R. M. S. and Arshad N., “Integrating floating solar PV with hydroelectric power plant: analysis of Ghazi Barotha Reservoir in Pakistan”, Energy Procedia, 158: 816-821, (2019).
  • [32] Singh A. K., Boruah D., Sehgal L. and Prasath R. A., “Feasibility study of a grid-tied 2 MW floating solar PV power station and e-transportation facility using ‘SketchUp Pro’ for the proposed smart city of Pondicherry in India”, Journal of Smart Cities, 2: 49-59, (2016).
  • [33] Arıcı N. and İskender A., “Problems and solutions of grid-connected in photovoltaic solar plants”, Journal of Polytechnic, 23: 215-222, (2020).
  • [34] Rauf H., Gull M. S. and Arshad N., “Complementing hydroelectric power with floating solar PV for daytime peak electricity demand”, Renewable Energy, 162: 1227-1242, (2020).
  • [35] Gamarra C. and Ronk J. J., “Floating solar: an emerging opportunity at the energy water nexus”, Texas Water Journal, 10: 32-45, (2019).
  • [36] Bakar M. S. A. and Nandong J., “Technoeconomic analysis of floating solar field for 1 GWh of electricity generation”, Materials Science and Engineering, 495: 1-17, (2019).
  • [37] Maues J. A., “Floating solar PV-Hydroelectric power plants in Brazil: Energy storage solution with great application potential”, International Journal of Energy Production & Management, 4: 40-52, (2019).
  • [38] Elshafei M., Ibrahim A., Helmy A., Abdallah M., Eldeib A., Badawy M. and AbdelRazek S., “Study of massive floating solar panels over lake Nasser”, Journal of Energy, 2021: 1-17, (2021).
  • [39] Lopez M., Rodriguez N. and Iglesias G., “Combined floating offshore wind and solar PV”, Journal of Marine Science and Engineering, 8: 1-20, (2020).
  • [40] Nebey A. H., Taye B. Z. and Workineh T. G., “GIS-based irrigation dams potential assessment of floating solar PV system”, Journal of Energy, 2020: 1-10, (2020).
  • [41] Sharma A. K. and Kothari D. P., “Uninterrupted green power using floating solar PV with pumped hydro energy storage & hydroelectric in India”, International Journal for Innovative Research in Science & Technology, 3: 94-99, (2016).
  • [42] Jamil N. A. A., Jumaat S. A., Salimin S., Abdullah M. N. and Nor A. F. M., “Performance enhacement of solar powered floating photovoltaic system using arduino approach”, International Journal of Power Electronics and Drive System (IJPEDS), 11: 651-657, (2020).
  • [43] Vivas F. J., De las Heras A., Segura F. and Andujar J. M., “A review of energy management strategies for renewable hybrid energy systems with hydrogen backup”, Renewable and Sustainable Energy Reviews, 82: 126-155, (2018).
  • [44] Donado K., Navarro L., Christian G., Quintero M. and Pardo M., “HYRES: A multi-objective optimization tool for proper configuration of renewable hybrid energy systems”, Energies, 13: 1-20, (2020).
  • [45] Augustin D., Chacko R. and Jacob J., “Canal top solar energy harvesting using reflector”, Global Research and Development Journal for Engineering, 1: 26-31, (2016).
  • [46] Raina G. and Sinha S., “Outlook on the Indian scenario of solar energy strategies : Policies and challenges”, Energy Strategy Reviews, 24: 331-341, (2019).
  • [47] Akpolat A. N., Dursun E., Kuzucuoğlu A. E., Yang Y., Blaabjerg F. and Baba A. F., “Performance Analysis of a grid-connected rooftop solar photovoltaic system”, Electronics, 8: 1-20, (2019).
  • [48] Lee S. and Choi D. H., “Reinforcement learning-based energy management of smart home with rooftop solar photovoltaic”, Sensors, 19: 1-23, (2019).
  • [49] Akrami E., Gholami A., Ameri M. and Zandi M., “Integrated an innovative energy system assessment by asisting solar energy for day and night time power generation: Exergetic and exergo-economic investigation”, Energy Conversion and Management, 175: 21-32, (2018).
  • [50] Palomba V., Borri E., Charalampidis A., Frazzica A., Karellas S. and Cabeza L. F., “An innovative solar-biomass energy system to increase the share of renewables in office buildings”, Energies, 14: 1-24, (2021).
  • [51] Capehart B. L.., Kennedy W. J. and Turner W. C., “Guide to energy management”, Gistrup: River Publishers, New York, USA, (2020).
  • [52] Zhang L., Gari N. and Hmurcik L. V., “Energy management in a microgrid with distributed energy resources”, Energy Conversion and Management, 78: 297-305, (2014).
  • [53] Özcan M., “Enhancing the renewable energy auctions in Turkey”, Journal of Polytechnic, 24: 1379-1390, (2021).
  • [54] Gümüş Z. and Demirtaş M., “Comparison of the algorithms used in maximum power plant tracking in photovoltaic systems under partial shading conditions”, Journal of Polytechnic, 24: 853-865, (2021).
  • [55] Horinov S. and Horinova S., “Energy management systems”, Global Conference on Sustainable Environment, Energy and Agriculture (GCSEEA 2017), London, GB, 1-9, (2017).
  • [56] Calvillo C. F., Miralles A. S. and Villar J., “Energy management and planning in smart cities”, Renewable & Sustainable Energy Reviews, 55: 273-287, (2016).
  • [57] Calik K., Firat C., “A cost-effective theoretical novel configuration of concentrated photovoltaic system with linear fresnel reflectors ”, Journal of Polytechnic, 22(3): 583-589, (2019).
  • [58] Selimli S., Dumrul H., Yilmaz S., Akman O., “Experimental and numerical analysis of energy and exergy performance of photovoltaic thermal water collectors”, Solar Energy, 228: 1-11, (2021)
  • [59] Cuce E., Cuce P. M., Guclu T., Besir A. B., “On the use of nanofluids in solar energy applications”, Journal of Thermal Science, 29: 513-534, (2020).
  • [60] Swese E.O.E., Hançerlioğulları A., “Investigation of performance on photovoltaic/thermal (PV/T) system using magnetic nanofluids”, Journal of Polytechnic, 25(1): 411-416, (2022).
  • [61] Ozturk O., Asikuzun E., Hacioglu Z.B. and Safran S., “Characteristics of ZnO:Er nano thin films produced different thickness using different solvent by sol-gel method”, Journal of Polytechnic, 25(1): 37-45, (2022).
  • [62] IRENA, Renewable Power Generation Costs in 2020, International Renewable Energy Agency, Abu Dhabi, ISBN 978-92-9260-348-9, (2021).

Hibrit Güneş-Hidroelektrik (GHE) Sistemine Rezervuar Etkisi

Yıl 2023, Cilt: 26 Sayı: 4, 1505 - 1515, 01.12.2023
https://doi.org/10.2339/politeknik.1074180

Öz

Güneş-hidroelektrik (GHE) enerji sistemi, güneş ve hidroelektrik enerjisinden oluşan bir yenilenebilir hibrit enerji sistemidir. Mevcut hidroelektrik enerji sistemlerine entegre bir şekilde kurulması planlanan GHE hibrit sistem kurulu güç büyüklüğünün tespiti için bir optimizasyon algoritması tasarlanmıştır. Tasarlanan bu algoritma fayda/maliyet yaklaşımıyla optimum kurulu gücün elde edilmesini sağlamaktadır. Hidro enerji tesisinin maliyeti ve enerji üretimi mevcut bir tesis olduğundan gerçekleşen değerler üzerinden alınmış olup, güneş enerjisinin elektrik üretimi ve maliyeti ise döngüsel olarak çalışan algoritmadan elde edilmiştir. Bu çalışmanın amacı, hidroelektrik santrallerinin sahip olduğu rezervuar sayesinde su akımlarının düzenlenmesi ile daha fazla elektrik üretimi yapılabileceğini göstermektir. Hidro enerji başka bir enerji depolama ekipmanı/yöntemi kullanmadan doğal depolama alanı olan rezervuar ile enerji yönetiminin daha etkin bir şekilde yürütülmesine imkan sağlamaktadır. Yapılan çalışma sonucunda, rezervuarı olan hidro tesis akımlarının düzenlenmesi ile düzenlenmemiş duruma göre 20,9 MW kurulu güç ile %180 daha fazla güneş enerji kapasitesi kurulumuna ve 75.3 GWh elektrik üretimi ile de %12 daha fazla elektrik üretimine imkan sağlandığı gösterilmiştir.

Kaynakça

  • [1] IHA, 2019 Hydropower Status Report Sector Trends and Insights, International Hydropower Association, IHA Central Office, London, (2020)
  • [2] TEİAŞ, Üretim Kapasite Projeksiyonu 2020-2024, Genel Müdürlüğü, Planlama ve Yatırım Yönetimi Dairesi Başkanlığı, Ankara, (2020)
  • [3] IPCC, Renewable Energy Sources and Climate Change Mitigation, Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, USA, ISBN: 978-1 107-02340-6, (2012)
  • [4] Kougias I., Bodis K., Waldou A. J., Ferrario F. M. and Szabo S., “Exploiting existing dams for solar PV system installations”, Progress in Photovoltaics: Research and Applications, 24: 229-239, (2016)
  • [5] Gisbert C. F., Gozalvez J. J. F., Santafe M. R., Gisbert P. F., Romero F. J. S. and Soler J. B. T., “A new photovoltaic floating cover system for water reservoirs”, Renewable Energy, 60: 63-70, (2013)
  • [6] Sairam P. M. N. and Aravindhan A., “Canal top solar panels: A unique nexus of energy, water and land”, Materialstoday: Proceedings, 33:705-710, (2020)
  • [7] Mittal D., Saxena B. K. and Rao K. V. S. , “Floating solar photovoltaic systems: An overview and their feasibility at Kota in Rajasthan”, 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Kollam, India, 1-7, (2017).
  • [8] Sahu A., Yadav N. and Sudhakar K., “Floating photovoltaic power plant: A review”, Renewable and Sustainable Energy Reviews, 66: 815-824, (2016)
  • [9] Lee N., Grunwald U., Rosenlieb E., Mirletz H., Aznar A., Spencer R. and Cox S., “Hybrid floating photovoltaics-hydropower systems: Benefits and global assesment of technical potential”, Renewable Energy, 162: 1415-1427, (2020).
  • [10] Fereshtehpour M., Sabbaghian R. J., Farrokhi A., Jovein E. B. and Sarindizaj E. E., “Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures”, Renewable Energy, 171: 1171-1187, (2021).
  • [11] Özden S., Dursun M., Aksöz A. and Saygın A., “Prediction and Modelling of energy consumption on temperature control for greenhouses”, Journal of Polytechnic, 22: 213-217, (2019).
  • [12] Kumar M., Chandel S. S. and Kumar A., “Performance analysis of a 10 MWp utility scale-grid connected canal-top photovoltaic power plant under Indian climatic conditions”, Energy, 204: (117903), (2020).
  • [13] Koç İ. and Başaran K., “Performance analysis of a PV/T based system by using Matlab/Simulink”, Journal of Polytechnic, 22: 229-236, (2019).
  • [14] Kapoor M. and Garg R. D., “Solar potential assessment over canal-top using geospatial techniques”, Arabian Journal of Geosciences, 14: (14), (2021).
  • [15] Yenioğlu Z. A. and Ateş V., “Evaluation of relative efficiency using renewable energy by data envelopment analysis: Turkey and seven European countries example”, Journal of Polytechnic, 22: 863-869, (2019).
  • [16] Kumar M. and Kumar A., “Experimental validation of performance and degredation study of canal-top photovoltaic system”, Applied Energy, 243: 102-118, (2019).
  • [17] Kumar M. and Kumar A., “Performance assessment of different photovoltaic technologies for canal-top and reservoir applications in subtrophical humid climate”, IEEE Journal of Photovoltaics, 9: 722-732, (2019).
  • [18] Javaid F. and Islam Z., “Proposed location and proposal for canal top solar PV plant”, 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria, 2020 (20279210), (2020).
  • [19] Sharma P., Muni B. and Sen D., “Design parameters of 10 kW floating solar power plant”, International Advanced Research Journal in Science, Engineering and Technology (IARJSET), 2: 85-89, (2015)
  • [20] Farfar J. and Breyer C., “Combining floating solar photovoltaic power plants and hydropower reservoirs: A virtual battery of great global potential”, Energy Procedia, 155: 403-411, (2018).
  • [21] Sanchez R. G., Kougias I., Girona M. M., Fahl F. and Waldau A. J., “Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa”, Renewable Energy, 169: 687-699, (2021).
  • [22] Selamoğulları U. S., “Analysis of a power inverter design considering the demand characteristics of a house with renewable energy sources”, Journal of Polytechnic, 23: 257-265, (2020).
  • [23] Patil (Desai) S. S., Wagh M. M. and Shinde N. N., “A review on floating solar photovoltaic power plants”, International Journal of Scientific & Engineering Research, 8: 789-794, (2017).
  • [24] Rahman W., Mahmud S., Ahmed R., Rahman S. and Arif Z., “Solar lanes and floating solar pv: new possibilities for source of energy generation in Bangladesh”, International conference on innovations in power and advanced computing technologies (i-PACT2017), Vellore, India, 1-6, (2017).
  • [25] Erol H. and Ayasun S., “Time delay margins computation for stability of hybrid power systems”, Journal of Polytechnic, 23: 1131-1139, (2020).
  • [26] Sahu A. K. and Sudhakar K., “Effect of UV exposure on bimodal HDPE floats for floating solar application”, Journal of Materials Research and Technology, 8: 147-156, (2019).
  • [27] Jamalludin M. A. S., Sukki F. M., Abu-Bakar S. H., Ramlee F., Munir A. B., Bani N. A., Muhtazaruddin M. N., Mas’ud A. A., Alfredo J., Rey A., Ayub A. S. and Sellami N., “Potential of floating solar technology in Malaysia”, International Journal of Power Electronics and Drive System (IJPEDS), 10: 1638-1644, (2019).
  • [28] Golroodbari S. Z. M., Vaartjes D. F., Meit J. B. L., van Hoeken A. P., Eberveld M., Jonker H. and van Sark W. G. J. H. M., “Pooling the cable: A techno-economic feasibility study of integrating offshore floating photovoltaic solar technology within an offshore wind park”, Solar Energy, 219: 65-74, (2021).
  • [29] Özcan E., Gür Ş. and Eren T., “A hybrid model to optimize the maintenance policies in the hydroelectric power plants”, Journal of Polytechnic, 24: 75-86, (2021).
  • [30] Solomin E., Sirotkin E., Cuce E., Selvanathan S. P. and Kumarasamy S., “Hybrid floating solar plant designs: a review”, Energies, 14: 1-25, (2021).
  • [31] Gull H. R. M. S. and Arshad N., “Integrating floating solar PV with hydroelectric power plant: analysis of Ghazi Barotha Reservoir in Pakistan”, Energy Procedia, 158: 816-821, (2019).
  • [32] Singh A. K., Boruah D., Sehgal L. and Prasath R. A., “Feasibility study of a grid-tied 2 MW floating solar PV power station and e-transportation facility using ‘SketchUp Pro’ for the proposed smart city of Pondicherry in India”, Journal of Smart Cities, 2: 49-59, (2016).
  • [33] Arıcı N. and İskender A., “Problems and solutions of grid-connected in photovoltaic solar plants”, Journal of Polytechnic, 23: 215-222, (2020).
  • [34] Rauf H., Gull M. S. and Arshad N., “Complementing hydroelectric power with floating solar PV for daytime peak electricity demand”, Renewable Energy, 162: 1227-1242, (2020).
  • [35] Gamarra C. and Ronk J. J., “Floating solar: an emerging opportunity at the energy water nexus”, Texas Water Journal, 10: 32-45, (2019).
  • [36] Bakar M. S. A. and Nandong J., “Technoeconomic analysis of floating solar field for 1 GWh of electricity generation”, Materials Science and Engineering, 495: 1-17, (2019).
  • [37] Maues J. A., “Floating solar PV-Hydroelectric power plants in Brazil: Energy storage solution with great application potential”, International Journal of Energy Production & Management, 4: 40-52, (2019).
  • [38] Elshafei M., Ibrahim A., Helmy A., Abdallah M., Eldeib A., Badawy M. and AbdelRazek S., “Study of massive floating solar panels over lake Nasser”, Journal of Energy, 2021: 1-17, (2021).
  • [39] Lopez M., Rodriguez N. and Iglesias G., “Combined floating offshore wind and solar PV”, Journal of Marine Science and Engineering, 8: 1-20, (2020).
  • [40] Nebey A. H., Taye B. Z. and Workineh T. G., “GIS-based irrigation dams potential assessment of floating solar PV system”, Journal of Energy, 2020: 1-10, (2020).
  • [41] Sharma A. K. and Kothari D. P., “Uninterrupted green power using floating solar PV with pumped hydro energy storage & hydroelectric in India”, International Journal for Innovative Research in Science & Technology, 3: 94-99, (2016).
  • [42] Jamil N. A. A., Jumaat S. A., Salimin S., Abdullah M. N. and Nor A. F. M., “Performance enhacement of solar powered floating photovoltaic system using arduino approach”, International Journal of Power Electronics and Drive System (IJPEDS), 11: 651-657, (2020).
  • [43] Vivas F. J., De las Heras A., Segura F. and Andujar J. M., “A review of energy management strategies for renewable hybrid energy systems with hydrogen backup”, Renewable and Sustainable Energy Reviews, 82: 126-155, (2018).
  • [44] Donado K., Navarro L., Christian G., Quintero M. and Pardo M., “HYRES: A multi-objective optimization tool for proper configuration of renewable hybrid energy systems”, Energies, 13: 1-20, (2020).
  • [45] Augustin D., Chacko R. and Jacob J., “Canal top solar energy harvesting using reflector”, Global Research and Development Journal for Engineering, 1: 26-31, (2016).
  • [46] Raina G. and Sinha S., “Outlook on the Indian scenario of solar energy strategies : Policies and challenges”, Energy Strategy Reviews, 24: 331-341, (2019).
  • [47] Akpolat A. N., Dursun E., Kuzucuoğlu A. E., Yang Y., Blaabjerg F. and Baba A. F., “Performance Analysis of a grid-connected rooftop solar photovoltaic system”, Electronics, 8: 1-20, (2019).
  • [48] Lee S. and Choi D. H., “Reinforcement learning-based energy management of smart home with rooftop solar photovoltaic”, Sensors, 19: 1-23, (2019).
  • [49] Akrami E., Gholami A., Ameri M. and Zandi M., “Integrated an innovative energy system assessment by asisting solar energy for day and night time power generation: Exergetic and exergo-economic investigation”, Energy Conversion and Management, 175: 21-32, (2018).
  • [50] Palomba V., Borri E., Charalampidis A., Frazzica A., Karellas S. and Cabeza L. F., “An innovative solar-biomass energy system to increase the share of renewables in office buildings”, Energies, 14: 1-24, (2021).
  • [51] Capehart B. L.., Kennedy W. J. and Turner W. C., “Guide to energy management”, Gistrup: River Publishers, New York, USA, (2020).
  • [52] Zhang L., Gari N. and Hmurcik L. V., “Energy management in a microgrid with distributed energy resources”, Energy Conversion and Management, 78: 297-305, (2014).
  • [53] Özcan M., “Enhancing the renewable energy auctions in Turkey”, Journal of Polytechnic, 24: 1379-1390, (2021).
  • [54] Gümüş Z. and Demirtaş M., “Comparison of the algorithms used in maximum power plant tracking in photovoltaic systems under partial shading conditions”, Journal of Polytechnic, 24: 853-865, (2021).
  • [55] Horinov S. and Horinova S., “Energy management systems”, Global Conference on Sustainable Environment, Energy and Agriculture (GCSEEA 2017), London, GB, 1-9, (2017).
  • [56] Calvillo C. F., Miralles A. S. and Villar J., “Energy management and planning in smart cities”, Renewable & Sustainable Energy Reviews, 55: 273-287, (2016).
  • [57] Calik K., Firat C., “A cost-effective theoretical novel configuration of concentrated photovoltaic system with linear fresnel reflectors ”, Journal of Polytechnic, 22(3): 583-589, (2019).
  • [58] Selimli S., Dumrul H., Yilmaz S., Akman O., “Experimental and numerical analysis of energy and exergy performance of photovoltaic thermal water collectors”, Solar Energy, 228: 1-11, (2021)
  • [59] Cuce E., Cuce P. M., Guclu T., Besir A. B., “On the use of nanofluids in solar energy applications”, Journal of Thermal Science, 29: 513-534, (2020).
  • [60] Swese E.O.E., Hançerlioğulları A., “Investigation of performance on photovoltaic/thermal (PV/T) system using magnetic nanofluids”, Journal of Polytechnic, 25(1): 411-416, (2022).
  • [61] Ozturk O., Asikuzun E., Hacioglu Z.B. and Safran S., “Characteristics of ZnO:Er nano thin films produced different thickness using different solvent by sol-gel method”, Journal of Polytechnic, 25(1): 37-45, (2022).
  • [62] IRENA, Renewable Power Generation Costs in 2020, International Renewable Energy Agency, Abu Dhabi, ISBN 978-92-9260-348-9, (2021).
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Mahir Dursun 0000-0003-0649-2627

Fatih Saltuk 0000-0002-7914-8838

Yayımlanma Tarihi 1 Aralık 2023
Gönderilme Tarihi 15 Şubat 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 26 Sayı: 4

Kaynak Göster

APA Dursun, M., & Saltuk, F. (2023). Reservoir Effect on the Hybrid Solar-Hydroelectric (SHE) System. Politeknik Dergisi, 26(4), 1505-1515. https://doi.org/10.2339/politeknik.1074180
AMA Dursun M, Saltuk F. Reservoir Effect on the Hybrid Solar-Hydroelectric (SHE) System. Politeknik Dergisi. Aralık 2023;26(4):1505-1515. doi:10.2339/politeknik.1074180
Chicago Dursun, Mahir, ve Fatih Saltuk. “Reservoir Effect on the Hybrid Solar-Hydroelectric (SHE) System”. Politeknik Dergisi 26, sy. 4 (Aralık 2023): 1505-15. https://doi.org/10.2339/politeknik.1074180.
EndNote Dursun M, Saltuk F (01 Aralık 2023) Reservoir Effect on the Hybrid Solar-Hydroelectric (SHE) System. Politeknik Dergisi 26 4 1505–1515.
IEEE M. Dursun ve F. Saltuk, “Reservoir Effect on the Hybrid Solar-Hydroelectric (SHE) System”, Politeknik Dergisi, c. 26, sy. 4, ss. 1505–1515, 2023, doi: 10.2339/politeknik.1074180.
ISNAD Dursun, Mahir - Saltuk, Fatih. “Reservoir Effect on the Hybrid Solar-Hydroelectric (SHE) System”. Politeknik Dergisi 26/4 (Aralık 2023), 1505-1515. https://doi.org/10.2339/politeknik.1074180.
JAMA Dursun M, Saltuk F. Reservoir Effect on the Hybrid Solar-Hydroelectric (SHE) System. Politeknik Dergisi. 2023;26:1505–1515.
MLA Dursun, Mahir ve Fatih Saltuk. “Reservoir Effect on the Hybrid Solar-Hydroelectric (SHE) System”. Politeknik Dergisi, c. 26, sy. 4, 2023, ss. 1505-1, doi:10.2339/politeknik.1074180.
Vancouver Dursun M, Saltuk F. Reservoir Effect on the Hybrid Solar-Hydroelectric (SHE) System. Politeknik Dergisi. 2023;26(4):1505-1.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.